首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Central Europe, Vinca minor has been planted for centuries as an ornamental, medicinal and ritual plant. We asked how variability in genetic and leaf traits of V. minor at ancient localities differs from that at recently established localities sampled mainly in the Czech Republic. Using selected ISSR primers, we obtained two clusters that correspond well with locality history. In the recent cluster, we identified a certain degree of genetic variability, whereas the ancient cluster exhibited none. We recorded significant differences in leaf shape between the clusters. Genotypes with narrow leaves were more characteristic of recent localities. Although the ancient cluster showed no variability in ISSR primers, it did show variability in leaf traits, indicating that some of the morphologically expressed genetic variability cannot be detected using ISSR primers. All samples were diploids (2n = 46), with an identical relative DNA content. Samples from ancient localities, such as deserted medieval settlements and castles, probably descended from a single or a few related clones. This supports the hypothesis concerning the allochthonous character of V. minor in the Czech Republic.  相似文献   

2.
Jason S. King 《Autophagy》2012,8(7):1159-1162
Autophagy is conserved throughout the eukaryotes and for many years, work in Saccharomyces cerevisiae has been at the forefront of autophagy research. However as our knowledge of the autophagic machinery has increased, differences between S. cerevisiae and mammalian cells have become apparent. Recent work in other organisms, such as the amoeba Dictyostelium discoideum, indicate an autophagic pathway much more similar to mammalian cells than S. cerevisiae, despite its earlier evolutionary divergence. S. cerevisiae therefore appear to have significantly specialized, and the autophagic pathway in mammals is much more ancient than previously appreciated, which has implications for how we interpret data from organisms throughout the eukaryotic tree.  相似文献   

3.
In the 25 years since the first DNA sequences were obtained from the extinct moa, ancient DNA analyses have significantly advanced our understanding of New Zealand's unique fauna. Here, we review how DNA extracted from ancient faunal remains has provided new insights into the evolutionary histories and phylogenetic relationships of New Zealand animals, and the impacts of human activities upon their populations. Moreover, we review how ancient DNA has played a key role in improving our ability to taxonomically identify fragmentary animal remains, determine biological function within extinct species, reconstruct past faunas and communities based on DNA preserved in sediments, resolve aspects of the ecology of extinct animals and characterising prehistoric parasite faunas. As ancient DNA analyses continue to become increasingly applied, and sequencing technologies continue to improve, the next 25 years promises to provide many more exciting new insights and discoveries about New Zealand's unique fauna.  相似文献   

4.
There is an ongoing debate in the field of human evolution about the possible contribution of Neanderthals to the modern human gene pool. To study how the Neanderthal private alleles may have spread over the genes of Homo sapiens, we propose a deterministic model based on recursive equations and ordinary differential equations. If the Neanderthal population was large compared to the Homo sapiens population at the beginning of the contact period, we show that genetic introgression should have been fast and complete meaning that most of the Neanderthal private alleles should be found in the modern human gene pool in case of ancient admixture. In order to test/reject ancient admixture from genome-wide data, we incorporate the model of genetic introgression into a statistical hypothesis-testing framework. We show that the power to reject ancient admixture increases as the ratio, at the time of putative admixture, of the population size of Homo sapiens over that of Neanderthal decreases. We find that the power to reject ancient admixture might be particularly low if the population size of Homo sapiens was comparable to the Neanderthal population size.  相似文献   

5.
Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.  相似文献   

6.
Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori, which infects human stomachs, parallels that of its human host. The time to the most recent common ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100 000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis, the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of less than 6000 years for the tMRCA of M. tuberculosis. Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases.  相似文献   

7.
Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution.  相似文献   

8.
Pyroptosis has been described in mammalian systems to be a form of programmed cell death that is important in immune function through the subsequent release of cytokines and immune effectors upon cell bursting. This form of cell death has been increasingly well-characterized in mammals and can occur using alternative routes however, across phyla, there has been little evidence for the existence of pyroptosis. Here we provide evidence for an ancient origin of pyroptosis in an in vivo immune scenario in Drosophila melanogaster. Crystal cells, a type of insect blood cell, were recruited to wounds and ruptured subsequently releasing their cytosolic content in a caspase-dependent manner. This inflammatory-based programmed cell death mechanism fits the features of pyroptosis, never before described in an in vivo immune scenario in insects and relies on ancient apoptotic machinery to induce proto-pyroptosis. Further, we unveil key players upstream in the activation of cell death in these cells including the apoptosome which may play an alternative role akin to the inflammasome in proto-pyroptosis. Thus, Drosophila may be a suitable model for studying the functional significance of pyroptosis in the innate immune system.  相似文献   

9.
Phenotypic plasticity is crucial for how organisms respond to variation in their environment, affecting their diversity and distribution, especially in the light of rapid environmental change. Ecogeographical rules predict an association between specific adaptive morphological and physiological traits with cooler conditions due to higher latitude, elevation, or climate change. Such ecogeographical effects are often most evident in ancient species due to continuous selective adaptation occurring over long periods of time. Here, we use the suitably ancient Chinese pygmy dormouse (Typhlomys cinereus) to test whether body-size, appendage length and heart size vary in accordance with Bergmann's, Allen's and Hesse's rule, respectively. Based on a sample of 67 adult individuals (female, n = 29; male n = 38) trapped at 37 sites transcending an elevational range from 414 to 1757 m, we tested for trait concordance with Bergmann's rule (body mass, length and SMI), Allen's rule (length of tail, foot, ear, snout), and Hesse's rule (wet and dry heart mass). Effects of elevation (and thus temperature lapse rate; calculated as 0.61 °C per 100 m) on body size, appendage length and heart size, were tested by fitting Standardized Major Axis (SMA) models. We observed substantial heterogeneity in morphometric traits allowing for the detection of ecogeographical clines. However, none conformed with Bergmann's, Allen's (except ear size), or Hesse's rule. However, our results indicate some support for Geist's rule of net primary productivity. We conclude that pervasive functional life-history adaptations in this blind, arboreal, echolocating ancient species exceeded selection for morphological energy efficiency constraints, with the notable exception of reduced ear pinnae size at colder, elevated sites. This is an important consideration for predicting how species, and populations in general, may adapt to human induced rapid environmental change, contrary to expectations of warming driving selection for smaller body-size.  相似文献   

10.
Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38–41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11–14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6–8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.  相似文献   

11.
The desiccation of the Mediterranean Basin at the end of the Miocene was a milestone in the evolution of the Mediterranean sandfly fauna. This severe environmental change should have notably influenced their paleobiogeography as well as paleoecology and might have triggered the rapid speciation of the ancestors of the extant European sandfly species. The aim of this study was to explore how the Messinian Salinity Crisis could influence the distribution and migration routes of the ancient Mediterranean sandfly species. The unknown ecological requirements of this ancient species were replaced by the distribution-limiting climatic values of three species of extant European phlebotomine sandflies which represent the three ecological types of European sandfly fauna. The former potential occurrence patterns were determined by Climate Envelope Modelling Method. As a climate model for the Messinian Period in the Mediterranean Basin, the modified mid-Pliocene warm period model was used. The thermal surplus of the desiccated seafloor was reconstructed based on the atmospheric lapse rate. It was found that the extraordinary hot climate of the Mediterranean abyssal plain did not allow the direct cross-migration of the ancient sandfly species anywhere between Europe and North Africa neither through Gibraltar nor the Strait of Sicily. While Phlebotomus neglectus and Phlebotomus papatasi could colonize the Adriatic Plain, Phlebotomus ariasi could not. The results indicate that the Messinian played an important role in the speciation rather than migration of the ancestors of present-day Mediterranean sandflies.  相似文献   

12.
A 335-bp segment of the NADH dehydrogenase F (ndhF) gene from a representative of each nonflowering vascular plant division (Coniferophyta, Filicophyta, Ginkgophyta, Gnetophyta, Lycophyta, Psilophyta, Sphenophyta) has been sequenced and aligned with those of rice, tobacco, an orchid and a liverwort. Because ndhF is apparently absent in the genus Pinus L. (Coniferophyta), it has been speculated that this gene may be absent in the gymnosperms. However, this study suggests that the absence of the ndhF gene in Pinus may be unique and is not a general characteristic of the gymnosperms.Abbreviations ndhF NADH dehydrogenase F - PCR polymerase chain reaction This research was supported by grants from NSF LASER/EPS-CoR 92-96-ADP-02, LEGSF RD-A-13 (1991–1994), and by the Department of Plant Biology, Louisiana State University.  相似文献   

13.
Pollastri S  Tattini M 《Annals of botany》2011,108(7):1225-1233

Background

New roles for flavonoids, as developmental regulators and/or signalling molecules, have recently been proposed in eukaryotic cells exposed to a wide range of environmental stimuli. In plants, these functions are actually restricted to flavonols, the ancient and widespread class of flavonoids. In mosses and liverworts, the whole set of genes for flavonol biosynthesis – CHS, CHI, F3H, FLS and F3′H – has been detected. The flavonol branch pathway has remained intact for millions of years, and is almost exclusively involved in the responses of plants to a wide array of stressful agents, despite the fact that evolution of flavonoid metabolism has produced >10 000 structures.

Scope

Here the emerging functional roles of flavonoids in the responses of present-day plants to different stresses are discussed based on early, authoritative views of their primary functions during the colonization of land by plants. Flavonols are not as efficient as other secondary metabolites in absorbing wavelengths in the 290–320 nm spectral region, but display the greatest potential to keep stress-induced changes in cellular reactive oxygen species homeostasis under control, and to regulate the development of individual organs and the whole plant. Very low flavonol concentrations, as probably occurred in early terrestrial plants, may fully accomplish these regulatory functions.

Conclusions

During the last two decades the routine use of genomic, chromatography/mass spectrometry and fluorescence microimaging techniques has provided new insights into the regulation of flavonol metabolism as well as on the inter- and intracellular distribution of stress-responsive flavonols. These findings offer new evidence on how flavonols may have performed a wide array of functional roles during the colonization of land by plants. In our opinion this ancient flavonoid class is still playing the same old and robust roles in present-day plants.  相似文献   

14.
Species invasions into ancient lakes are an important but little understood phenomenon. At ancient Lake Ohrid, a systematic assessment of invasive mollusc species using morphological and genetic data was conducted from 2003 to 2012. Two globally invasive gastropod species, Physa acuta and Ferrissia fragilis, have recently been discovered at 4 out of 386 sites. These sites are anthropogenically impacted. The invasive species co-occur with endemics. Phylogenetic analyses of populations from native and invaded ranges of both species confirmed their identities and provided insights into their invasion histories. Accordingly, P. acuta is genetically more diverse than F. fragilis. Both species are currently present in a considerable number of lakes on the Balkan Peninsula. Possible future trends in Lake Ohrid and the Balkans are discussed and further spread of both species is likely. Given the ongoing environmental change in Lake Ohrid, the number of observations of non-indigenous or other widespread species will probably rise in the coming years and such species and their impact on native species should be carefully monitored. Moreover, ancient lakes with recurrent invasions of alien species might serve as interesting model systems for the study of important topics of invasion biology.  相似文献   

15.
16.
In the 1980s the Nature Conservancy Council created an ancient woodland inventory showing all woods in Great Britain (GB) greater than 2 ha that were believed to have had woodland habitat cover continuously from 1600. Subsequently these lists have been maintained as three separate inventories by NCC's successors, English Nature (now Natural England), Countryside Council for Wales and Scottish Natural Heritage. This paper outlines the concept of ancient woodland as it has developed in GB, and how this idea gave rise to the ancient woodland inventories. The criteria used in compiling the inventories are discussed, including the inception dates and the threshold size, and the difference between ancient woodland and parkland. The inventories have been digitised for use with Geographic Information Systems (GIS), which has made them more accessible to planners and nature conservation bodies; however, the digitising process is more precise than the original definition of the boundaries of the ancient woodland. The three different countries have approached this issue slightly differently, taking account of the differing landscapes within which their ancient woodland exists. As the inventory developed, new legislation has also been brought into play to protect ancient woodland further. The inventory currently lacks detailed information concerning the condition or type of wood, beyond its semi-natural or plantation status. Ascertaining, and then maintaining, the condition of ancient woodland in Great Britain will be a major challenge for the future.  相似文献   

17.
Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of nearly half of the world''s population. Genotypic characterization of H. pylori strains involves the analysis of virulence-associated genes, such as vacA, which has multiple alleles. Previous phylogenetic analyses have revealed a connection between modern H. pylori strains and the movement of ancient human populations. In this study, H. pylori DNA was amplified from the stomach tissue of the Kwäday Dän Ts''ìnchi individual. This ancient individual was recovered from the Samuel Glacier in Tatshenshini-Alsek Park, British Columbia, Canada on the traditional territory of the Champagne and Aishihik First Nations and radiocarbon dated to a timeframe of approximately AD 1670 to 1850. This is the first ancient H. pylori strain to be characterized with vacA sequence data. The Tatshenshini H. pylori strain has a potential hybrid vacA m2a/m1d middle (m) region allele and a vacA s2 signal (s) region allele. A vacA s2 allele is more commonly identified with Western strains, and this suggests that European strains were present in northwestern Canada during the ancient individual''s time. Phylogenetic analysis indicated that the vacA m1d region of the ancient strain clusters with previously published novel Native American strains that are closely related to Asian strains. This indicates a past connection between the Kwäday Dän Ts''ìnchi individual and the ancestors who arrived in the New World thousands of years ago.  相似文献   

18.
The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.  相似文献   

19.
20.
Ancient lakes have long been recognized as “hot spots of evolution” and “evolutionary theatres” and they have significantly contributed to a better understanding of speciation and radiation processes in space and time. Yet, phylogenetic relationships of many ancient lake taxa, particularly invertebrate groups, are still unresolved. Also, the lack of robust morphological, anatomical, and phylogeographical data has largely prevented a rigorous testing of evolutionary hypotheses. For the freshwater gastropod genus Valvata—a group with a high degree of endemism in several ancient lakes—different evolutionary scenarios are suggested for different ancient lakes. Lake Baikal, for example, is inhabited by several endemic Valvata taxa that presumably do not form a monophyletic group. For such an evolutionary pattern, the term ancient lake species scatter is introduced here. In contrast, for the Balkan Lake Ohrid, workers previously suggested the presence of a monophyletic group of endemic Valvata species, that is, an ancient lake species flock. Sequence data of the mitochondrial cytochrome oxidase c subunit I gene (COI) from worldwide taxa, with a strong emphasis on Balkan species, are here used to test whether the putative Ohrid Valvata endemics represent an ancient lake species flock and to study patterns of speciation both on the Ohrid and the Balkan scale. The study reveals three distinct clades of endemic Valvata in Lake Ohrid. Monophyly of these taxa, however, is rejected, and they therefore do not represent an ancient lake species flock, but rather an ancient lake species scatter. Also, in contrast to many other gastropod groups in Lake Ohrid, the valvatids apparently did not radiate. Many Valvata taxa in ancient lakes are characterized by enhanced levels of shell complexity. However, it remains unclear whether these patterns are associated with ancient lake environments per se. It is here suggested that similarities in shell structure between North American and Balkan taxa might simply be due to convergent evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号