首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Villin-type headpiece domains are compact motifs that have been used extensively as model systems for protein folding. Although the majority of headpiece domains bind actin, there are some that lack this activity. Here, we present the first NMR solution structure and 15N-relaxation analysis of a villin-type headpiece domain natively devoid of F-actin binding activity, that of supervillin headpiece (SVHP). The structure was found to be similar to that of other headpiece domains that bind F-actin. Our NMR analysis demonstrates that SVHP lacks a conformationally flexible region (V-loop) present in all other villin-type headpiece domains and which is essential to the phosphoryl regulation of dematin headpiece. In comparing the electrostatic surface potential map of SVHP to that of other villin-type headpiece domains with significant affinity for F-actin, we identified a positive surface potential conserved among headpiece domains that bind F-actin but absent from SVHP. A single point mutation (L38K) in SVHP, which creates a similar positive surface potential, endowed SVHP with specific affinity for F-actin that is within an order of magnitude of the tightest binding headpiece domains. We propose that this effect is likely conferred by a specific buried salt bridge between headpiece and actin. As no high-resolution structural information exists for the villin-type headpiece F-actin complex, our results demonstrate that through positive mutagenesis, it is possible to design binding activity into homologous proteins without structural information of the counterpart's binding surface.  相似文献   

2.
Dematin (band 4.9) is found in the junctional complex of the spectrin cytoskeleton that supports the erythrocyte cell membrane. Dematin is a member of the larger class of cytoskeleton-associated proteins that contain a modular "headpiece" domain at their extreme C termini. The dematin headpiece domain provides the second F-actin-binding site required for in vitro F-actin bundling. The dematin headpiece is found in two forms in the cell, one of 68 residues (DHP) and one containing a 22-amino acid insert near its N terminus (DHP+22). In addition, dematin contains the only headpiece domain that is phosphorylated, in vivo. The 22-amino acid insert in DHP+22 appeared unstructured in NMR spectra; therefore, we have determined the three-dimensional structure of DHP by multidimensional NMR methods. Although the overall three-dimensional structure of DHP is similar to that of the villin headpiece, there are two novel characteristics revealed by this structure. First, unlike villin headpiece that contains a single buried salt bridge, DHP contains a buried charged cluster comprising residues Glu(39), Arg(66), Lys(70), and the C-terminal carboxylate of Phe(76). Second, (15)N relaxation experiments indicate that the longer "variable loop" region near the N terminus of DHP (residues 20-29) is dynamic, undergoing significantly greater motions that the rest of the structure. Furthermore, NMR chemical shift changes indicate that the conformation of the dynamic variable loop is altered by phosphorylation of serine 74, which is far in the sequence from the variable loop region. Our results suggest that phosphorylation of the dematin headpiece acts as a conformational switch within this headpiece domain.  相似文献   

3.
Meng J  Vardar D  Wang Y  Guo HC  Head JF  McKnight CJ 《Biochemistry》2005,44(36):11963-11973
Villin-type headpiece domains are approximately 70 amino acid modular motifs found at the C terminus of a variety of actin cytoskeleton-associated proteins. The headpiece domain of villin, a protein found in the actin bundles of the brush border epithelium, is of interest both as a compact F-actin binding domain and as a model folded protein. We have determined the high-resolution crystal structures of chicken villin headpiece (HP67) at 1.4 A resolution as well as two mutants, R37A and W64Y, at 1.45 and 1.5 A resolution, respectively. Replacement of R37 causes a 5-fold reduction in F-actin binding affinity in sedimentation assays. Replacement of W64 results in a much more drastic reduction in F-actin binding affinity without significant changes in headpiece structure or stability. The detailed comparison of these crystal structures with each other and to our previously determined NMR structures of HP67 and the 35-residue autonomously folding subdomain in villin headpiece, HP35, provides the details of the headpiece fold and further defines the F-actin binding site of villin-type headpiece domains.  相似文献   

4.
Villin is an F-actin regulating, modular protein with a gelsolin-like core and a distinct C-terminal "headpiece" domain. Localized in the microvilli of the absorptive epithelium, villin can bundle F-actin and, at higher calcium concentrations, is capable of a gelsolin-like F-actin severing. The headpiece domain can, in isolation, bind F-actin and is crucial for F-actin bundling by villin. While the three-dimensional structure of the isolated headpiece is known, its conformation in the context of attachment to the villin core remains unexplored. Furthermore, the dynamics of the linkage of the headpiece to the core has not been determined. To address these issues, we employ a 208-residue modular fragment of villin, D6-HP, which consists of the sixth gelsolin-like domain of villin (D6) and the headpiece (HP). We demonstrate that this protein fragment requires calcium for structural stability and, surprisingly, is capable of Ca2+-dependent F-actin bundling, suggesting that D6 contains a cryptic F-actin binding site. NMR resonance assignments and 15N relaxation measurements of D6-HP in 5 mM Ca2+ demonstrate that D6-HP consists of two independent structural domains (D6 and HP) connected by an unfolded 40-residue linker sequence. The headpiece domain in D6-HP retains its structure and interacts with D6 only through the linker sequence without engaging in other interactions. Chemical shift values indicate essentially the same secondary structure elements for D6 in D6-HP as in the highly homologous gelsolin domain 6. Thus, the headpiece domain of villin is structurally and functionally independent of the core domain.  相似文献   

5.
A growing family of F-actin-bundling proteins harbors a modular F-actin-binding headpiece domain at the C terminus. Headpiece provides one of the two F-actin-binding sites essential for filament bundling. Here, we report the first structure of a functional headpiece domain. The NMR structure of chicken villin headpiece (HP67) reveals two subdomains that share a tightly packed hydrophobic core. The N-terminal subdomain contains bends, turns, and a four-residue alpha-helix as well as a buried histidine residue that imparts a pH-dependent folding. The C-terminal subdomain is composed of three alpha-helices and its folding is pH-independent. Two residues previously implicated in F-actin-binding form a buried salt-bridge between the N and C-terminal subdomains. The rest of the identified actin-binding residues are solvent-exposed and map onto a unique F-actin-binding surface.  相似文献   

6.
Dematin (band 4.9) is an F-actin binding and bundling protein best known for its role within red blood cells, where it both stabilizes as well as attaches the spectrin/actin cytoskeleton to the erythrocytic membrane. Here, we investigate the structural consequences of phosphorylating serine 381, a covalent modification that turns off F-actin bundling activity. In contrast to the canonical doctrine, in which phosphorylation of an intrinsically disordered region/protein confers affinity for another domain/protein, we found the converse to be true of dematin: phosphorylation of the well folded C-terminal villin-type headpiece confers affinity for its intrinsically disordered N-terminal core domain. We employed analytical ultracentrifugation to demonstrate that dematin is monomeric, in contrast to the prevailing view that it is trimeric. Next, using a series of truncation mutants, we verified that dematin has two F-actin binding sites, one in the core domain and the other in the headpiece domain. Although the phosphorylation-mimicking mutant, S381E, was incapable of bundling microfilaments, it retains the ability to bind F-actin. We found that a phosphorylation-mimicking mutant, S381E, eliminated the ability to bundle, but not bind F-actin filaments. Lastly, we show that the S381E point mutant caused the headpiece domain to associate with the core domain, leading us to the mechanism for cAMP-dependent kinase control of dematin''s F-actin bundling activity: when unphosphorylated, dematin''s two F-actin binding domains move independent of one another permitting them to bind different F-actin filaments. Phosphorylation causes these two domains to associate, forming a compact structure, and sterically eliminating one of these F-actin binding sites.  相似文献   

7.
Headpiece (HP) is a 76-residue F-actin-binding module at the C terminus of many cytoskeletal proteins. Its 35-residue C-terminal subdomain is one of the smallest known motifs capable of autonomously adopting a stable, folded structure in the absence of any disulfide bridges, metal ligands, or unnatural amino acids. We report the three-dimensional solution structures of the C-terminal headpiece subdomains of human villin (HVcHP) and human advillin (HAcHP), determined by two-dimensional 1H-NMR. They represent the second and third structures of such C-terminal headpiece subdomains to be elucidated so far. A comparison with the structure of the chicken villin C-terminal subdomain reveals a high structural conservation. Both C-terminal subdomains bind specifically to F-actin. Mutagenesis is used to demonstrate the involvement of Trp 64 in the F-actin-binding surface. The latter residue is part of a conserved structural feature, in which the surface-exposed indole ring is stacked on the proline and lysine side chain embedded in a PXWK sequence motif. On the basis of the structural and mutational data concerning Trp 64 reported here, the results of a cysteine-scanning mutagenesis study of full headpiece, and a phage display mutational study of the 69-74 fragment, we propose a modification of the model, elaborated by Vardar and coworkers, for the binding of headpiece to F-actin.  相似文献   

8.
Transfected CV1 cells were used to compare the in vivo effects of various domains of villin and gelsolin. These two homologous actin modulating proteins both contain a duplicated severin-like sequence. Villin has in addition a carboxy-terminal domain, the headpiece, which accounts for its bundling activity. The effects of the villin-deleted mutants were compared with those of native villin. Our results show that essential domains of villin required to induce the growth of microvilli and F-actin redistribution are present in the first half of the core and in the headpiece. We also show that the second half of the villin core cannot be exchanged by its homolog in gelsolin. When expressed at high levels of CV1 cells, full length gelsolin completely disrupted stress fibers without change of the cell shape. Addition of the villin headpiece to gelsolin had no effect on the phenotype induced by gelsolin alone. Expression of the first half of gelsolin induced similar modifications as capping proteins and rapid cell mortality; this deleterious effect on the cell structure was also observed when the headpiece was linked to the first half of gelsolin. In cells expressing the second half of gelsolin, a dotted F-actin staining was often seen. Moreover elongated dorsal F-actin structures were observed when the headpiece was linked to the second gelsolin domain. These studies illustrate the patent in vivo severing activity of gelsolin as well as the distinct functional properties of villin core in contrast to gelsolin.  相似文献   

9.
LSP1 is an F-actin binding with multiple F-actin binding domains. Overexpression of LSP1 in NAD 47/89 patient's neutrophils created hair-like projections on the patient's neutrophil cell surfaces and inhibited neutrophil cell motility and transfection of LSP1 in serial cell lines recreate the NAD 47/89 phenotype and produce branching hair-like surface projections. Although LSP1 contains hair-forming ability and LSP1 F-actin binding domains have been defined, the LSP1 domains responsible for its hair-forming activity, the relationship to the F-actin binding domains, and the required domain interactions, if any, for hair formation are not well understood. To define the hair-forming domains of LSP1, the relationship to the known F-actin binding domains, and binding domain interactions, LSP1 truncates, which include or exclude the different F-actin binding domains, were created by PCR. LSP1 mutants were created by site-directed mutagenesis to define the amino acids important for hair formation. Sf9 cells were infected with recombinant baculovirus expressing the cDNA of LSP1 truncates and mutants, and the morphology of infected Sf9 cells was documented by DIC optics. Results show that (1) the hair-forming activity of LSP1 is localized to the basic C-terminal half of the molecule, which contains all of the F-actin binding domains; (2) both the caldesmon-like domains and the villin headpiece-like domains are required for the hair-forming activity of LSP1; (3) basic amino acids in the villin headpiece regions are crucial for the hair-forming activity of LSP1 molecule. The results suggest cooperation between the caldesmon-like domains and the villin headpiece-like domains are required for the hair-forming activity of human LSP1 in cells.  相似文献   

10.
Human lymphocyte-specific protein 1 (LSP1) is an F-actin binding protein, which has an acidic N-terminal half and a basic C-terminal half. In the basic C-terminal half, there are amino acid sequences highly homologous to the actin-binding domains of two known F-actin binding proteins: caldesmon and the villin headpieces (CI, CII, VI, VII). However, the exact numbers and locations of the F-actin binding domains within LSP1 are not clearly defined. In this report, we utilized 125I-labeled F-actin ligand blotting and high-speed F-actin cosedimentation assays to analyze the F-actin binding properties of truncated LSP1 peptides and to define the F-actin binding domains. Results show that LSP1 has at least three and potentially a fourth F-actin binding domain. All F-actin binding domains are located in the basic C-terminal half and correspond to the caldesmon and villin headpiece homologous regions. LSP1 181-245 and LSP1 246-295, containing sequences homologous to caldesmon F-actin binding site I and II, respectively (CI, CII), binds F-actin; similarly, LSP1 306-339 can bind F-actin and contains two inseparable villin headpiece-like F-actin binding domains (VI, VII). Although LSP1 1-305, which does not contain VI and VII regions, retains F-actin binding activity, its binding affinity for F-actin is much weaker than that of full-length LSP1. Site-directed mutagenesis of the basic amino acids in the KRYK (VI) or KYEK (VII) sequences to acidic amino acids create mutants that bind F-actin with lower affinity than full-length wild-type LSP1. High KCl concentrations decrease full-length LSP1 binding to F-actin, suggesting the affinity between LSP1 and F-actin is mainly through electrostatic interaction.  相似文献   

11.
Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg-/- fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin-rich cell protrusions. Arg requires both its F-actin-binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg-/- fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts.  相似文献   

12.
Meng J  McKnight CJ 《Biochemistry》2008,47(16):4644-4650
Villin-type headpiece domains are compact F-actin-binding motifs that have been used extensively as a model system to investigate protein folding by both experimental and computational methods. Villin headpiece (HP67) harbors a highly helical, thermostable, and autonomously folding subdomain in the C terminus (HP35), and because of this feature, HP67 is usually considered to be composed of a N- and C-terminal subdomain. Unlike the C-terminal subdomain, the N-terminal subdomain consists mainly of loops and turns, and the folding is dependent upon the presence of the C-terminal subdomain. The pH sensitivity of this subdomain is thought to arise from, at least partially, protonation of H41 buried in the hydrophobic core. Substitution of this histidine with tyrosine, another permissive residue at this position for naturally occurring sequences, increases not only the pH stability of HP67 but also the thermal stability and the cooperativity of thermal unfolding over a wide pH range (0.9-7.5). The crystal structures of wild-type HP67 and the H41Y mutant, determined under the same conditions, indicate that the H41Y substitution causes only localized rearrangement around the mutated residue. The F-actin-binding motif remains essentially the same after the mutation, accounting for the negligible effect of the mutation on F-actin affinity. The hydrogen bond formed between the imidazole ring of H41 and the backbone carbonyl of E14 of HP67 is eliminated by the H41Y mutation, which renders the extreme N terminus of H41Y more mobile; the hydrogen bond formed between the imidazole ring of H41 and the backbone nitrogen of D34 is replaced with that between the hydroxyl group of Y41 and the backbone nitrogen of D34 after the H41Y substitution. The increased hydrophobicity of tyrosine compensates for the loss of hydrogen bonds in the extreme N terminus and accounts for the increased stability and cooperativity of the H41Y mutant.  相似文献   

13.
The crystal structure of the F-actin binding domain 2 of severin, the gelsolin homologue from Dictyostelium discoideum, has been determined by multiple isomorphous replacement and refined to 1.75 A resolution. The structure reveals an alpha-helix-beta-sheet sandwich similar to the domains of gelsolin and villin, and contains two cation-binding sites, as observed in other domain 1 and domain 2 homologues. Comparison of the structures of several gelsolin family domains has identified residues that may mediate F-actin binding in gelsolin domain 2 homologues. To assess the involvement of these residues in F-actin binding, three mutants of human gelsolin domain 2 were assayed for F-actin binding activity and thermodynamic stability. Two of the mutants, RRV168AAA and RLK210AAA, demonstrated a lowered affinity for F-actin, indicating a role for those residues in filament binding. Using both structural and biochemical data, we have constructed a model of the gelsolin domain 1-domain 2-F-actin complex. This model highlights a number of interactions that may serve as positive and negative determinants of filament end- and side-binding.  相似文献   

14.
The integrin alpha(v)beta(3) has been shown to exist in low and high affinity conformations. Activation to the high affinity state is thought to depend on the "switchblade-like" opening, from a low affinity bent conformation with a closed headpiece to an extended form of the integrin with an open headpiece. Activation has been shown to depend on separation of the cytoplasmic domains. How cytoplasmic domain separation is related to separation of the transmembrane domains is unknown, and the distance of separation of the transmembrane domains required for activation has not been defined. A constrained secreted form of alpha(v)beta(3) was engineered that introduced a 50-A separation of the integrin C-terminal tails of the extracellular domains of the alpha(v) and beta(3) subunits. Receptor binding and recognition by ligand-induced binding state (LIBS) monoclonal antibodies demonstrated that the mutant receptor was locked into a low affinity state that was likely in a partially extended conformation but with a closed headpiece. In the presence of RGD peptide, the constrained receptor was able to fully extend, as determined by full exposure of LIBS epitopes. In the presence of the appropriate LIBS antibody, high affinity ligand binding of the constrained receptor was achieved. The results support the existence of transient intermediate activation states of secreted alpha(v)beta(3). Furthermore, these results with the secreted alpha(v)beta(3) receptor support a model for the full-length membrane-bound form of alpha(v)beta(3), whereby a 50-A lateral separation of the integrin alpha(v) and beta(3) transmembrane domains would be sufficient to enforce the switchblade-like opening to the extended conformation but insufficient for full receptor activation.  相似文献   

15.
We have developed an 125I-labeled F-actin blot overlay assay for the identification of F-actin-binding proteins after transfer to nitrocellulose from SDS-polyacrylamide gels. Two major F-actin-binding proteins from Dictyostelium discoideum, a cytoplasmic 30 kDa protein and a 17 kDa integral membrane protein, and two minor membrane polypeptides of 19 kDa and 15 kDa were detected by this method. Using F-actin affinity and immunoaffinity chromatography, the 17 kDa polypeptide was identified as ponticulin, a previously described actin-binding glycoprotein from D. discoideum plasma membranes (Wuestehube, L.J., and Luna, E.J., [1987]: J. Cell Biol. 105:1741-1751). The binding of F-actin to ponticulin on blots is specific because unlabeled F-actin competes with 125I-labeled F-actin and because G-actin does not bind. Nitrocellulose-bound ponticulin displays binding characteristics similar to those of purified plasma membranes in solution, e.g., F-actin binding is sensitive to high salt and to elevated temperatures. Under optimal conditions, 125-I-labeled F-actin blot overlays are at least as sensitive as are immunoblots with an antibody specific for ponticulin. When blotted onto nitrocellulose after 2-D gel electrophoresis, all isoforms of ponticulin and of the 19 kDa and 15 kDa polypeptides appear to bind F-actin in proportion to their abundance. Thus the actin-binding activies of these proteins do not appear to be regulated by modifications that affect isoelectric point. However, the actin-binding activity of nitrocellulose-bound ponticulin is diminished when the protein is exposed to reducing agents, suggesting an involvement of disulfide bond(s) in ponticulin function. The 125I-labeled F-actin blot overlay assay also may enable us to identify F-actin-binding proteins in other cell types and should provide a convenient method for monitoring the purification of these proteins.  相似文献   

16.
Villin is an F-actin binding protein located in the microfilament bundle of intestinal epithelial cell microvilli. Extensive in vitro proteolysis with Staphylococcus aureus V8 protease results in the production of a stable domain (apparent Mr 44000) which can be isolated due to its Ca2+-dependent interaction with G-actin bound to immobilized DNase-I, the standard procedure for the purification of villin. This 44-kDa fragment retains a single Ca2+ binding site with an apparent Kd = 2 X 10(-6) M, binds to G-actin, and inhibits the rate of actin polymerization. However, the 44-kDa domain does not shown any Ca2+-activated severing activity nor does it compete with villin for F-actin binding. These results suggest that villin contains three domains: headpiece containing an F-actin binding site, 44-kDa fragment containing a G-actin binding site, and an amino-terminal fragment responsible for the Ca2+-dependent severing activity.  相似文献   

17.
Huntingtin-interacting protein-1 related (HIP1R) has a crucial protein-trafficking role, mediating associations between actin and clathrin-coated structures at the plasma membrane and trans-Golgi network. Here, we characterize the F-actin-binding region of HIP1R, termed the talin-HIP1/R/Sla2p actin-tethering C-terminal homology (THATCH) domain. The 1.9-A crystal structure of the human HIP1R THATCH core reveals a large sequence-conserved surface patch created primarily by residues from the third and fourth helices of a unique five-helix bundle. Point mutations of seven contiguous patch residues produced significant decreases in F-actin binding. We also show that THATCH domains have a conserved C-terminal latch capable of oligomerizing the core, thereby modulating F-actin engagement. Collectively, these results establish a framework for investigating the links between endocytosis and actin dynamics mediated by THATCH domain-containing proteins.  相似文献   

18.
《The Journal of cell biology》1993,120(6):1417-1426
Two related cellular proteins, p80 and p85 (cortactin), become phosphorylated on tyrosine in pp60src-transformed cells and in cells stimulated with certain growth factors. The amino-terminal half of cortactin is comprised of multiple copies of an internal, tandem 37- amino acid repeat. The carboxyl-terminal half contains a distal SH3 domain. We report that cortactin is an F-actin-binding protein. The binding to F-actin is specific and saturable. The amino-terminal repeat region appears to be both necessary and sufficient to mediate actin binding, whereas the SH3 domain had no apparent effect on the actin- binding activity. Cortactin, present in several different cell types, is enriched in cortical structures such as membrane ruffles and lamellipodia. The properties of cortactin indicate that it may be important for microfilament-membrane interactions as well as transducing signals from the cell surface to the cytoskeleton. We suggest the name cortactin, reflecting the cortical subcellular localization and its actin-binding activity.  相似文献   

19.
D88 and D109, two cyanogen bromide fragments of desmin which essentially correspond to the amino terminal headpiece domain and Helix 1B, respectively, bind to intact desmin with different topological specificities. D88, the headpiece domain fragment, binds only to the headpiece of intact desmin. In contrast, D109, which encompasses Helix 1B and most of the linker L10 binds to desmin even when its headpiece is removed. Additionally, these fragments only bind desmin if they are present during filament assembly; they do not bind pre-assembled desmin IF or tetramers. These observations suggest that, while alpha-helical coiled-coil interaction between rod domains provides the major driving force behind IF protein dimer formation, homophilic binding of head domains of these proteins may provide an additional stabilizing force and/or specify axial registration in certain IF proteins.  相似文献   

20.
Ma H  Lewis D  Xu C  Inesi G  Toyoshima C 《Biochemistry》2005,44(22):8090-8100
Twenty five amino acids within the "N", "P", and "A" domains of the Ca(2+) ATPase (SERCA1) headpiece were subjected to site directed mutagenesis, taking advantage of a high yield expression system. Functional and conformational effects of mutations were interpreted systematically in the light of the high resolution WT structure, defining direct involvement in catalysis as well as in stabilization of various positions acquired by each domain upon substrate binding and utilization. Amino acids involved in binding of ATP (such as Phe487 and Arg560 in the N domain) or phosphate (such as Asp351, Thr625, Lys684, and Thr353 in the P domain) were characterized with respect to their binding mechanism. Further identified were "positional" roles of several amino acids that stabilize neighboring residues for optimal binding of substrate or Mg(2+), or interface between headpiece domains as they change their relative positions in the course of the catalytic cycle. These include cross-linking of the "N" and "P" domains (e.g., Arg560/Asp627 salt bridge to stabilize domain approximation by ATP binding), and stabilization of the "A", "N", and activated "P" domains in arrangements differing from the ground E2 state and driven by catalytic events. This stabilization is produced through hydrogen bonds at domain interfaces, which vary depending on the intermediate state (e.g., Glu486/T171 in E1P and E2P, as opposed to Glu486/H190 in E2). We demonstrate that specific arrangements of the headpiece domains shown in crystal structures are, in fact, required to trigger displacement of transmembrane segments during the enzyme cycle in solution, allowing long range linkage of catalytic and Ca(2+) binding functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号