首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
CUP-SHAPED COTYLEDON (CUC)1 encodes members of the NAC family. These are functionally redundant genes that are involved in shoot apical meristem (SAM) formation and cotyledon separation during embryogenesis in Arabidopsis. We analyzed transgenic plants overexpressing CUC1 (35S::CUC1). The cotyledons of these transgenic seedlings regularly had two basal lobes, small and round epidermal cells between the sinuses, and adventitious SAMs on the adaxial surface of this region. This suggests that CUC1 promotes adventitious SAM formation by maintaining epidermal cells in an undifferentiated state. In 35S::CUC1 cotyledons, the class I knotted-like homeobox (KNOX) genes, including SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS (BP), which are involved in SAM formation and/or maintenance, were ectopically expressed before adventitious SAM formation. In stm mutants, ectopic expression of CUC1 could not induce adventitious SAMs, whereas they continued to be observed in bp mutants. These results suggest that STM, but not BP, is necessary for the formation of adventitious SAMs in 35S::CUC1 cotyledons. Furthermore, we examined the relationship between CUC1 and ASYMMETRIC LEAVES (AS)1 and AS2. The as1 and as2 mutations genetically enhance 35S::CUC1 phenotypes even in the absence of STM function. Interestingly, the as1 mutation can partially rescue the mutant vegetative development phenotypes in the cuc1 cuc2 double mutant. Our results suggest that CUC1 positively regulates SAM formation not only through STM but also through an STM-independent pathway that is negatively regulated by AS1 and AS2.  相似文献   

2.
3.
In higher plants, molecular mechanisms regulating shoot apical meristem (SAM) formation and organ separation are largely unknown. The CUC1 (CUP-SHAPED COTYLEDON1) and CUC2 are functionally redundant genes that are involved in these processes. We cloned the CUC1 gene by a map-based approach, and found that it encodes a NAC-domain protein highly homologous to CUC2. CUC1 mRNA was detected in the presumptive SAM during embryogenesis, and at the boundaries between floral organ primordia. Surprisingly, overexpression of CUC1 was sufficient to induce adventitious shoots on the adaxial surface of cotyledons. Expression analyses in the overexpressor and in loss-of-function mutants suggest that CUC1 acts upstream of the SHOOT MERISTEMLESS gene.  相似文献   

4.
5.
6.
Background and Aims During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. Methods Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. Key Results Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. Conclusions The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.  相似文献   

7.
8.
The shoot stem cell niche, contained within the shoot apical meristem (SAM) is maintained in Arabidopsis by the homeodomain protein SHOOT MERISTEMLESS (STM). STM is a mobile protein that traffics cell‐to‐cell, presumably through plasmodesmata. In maize, the STM homolog KNOTTED1 shows clear differences between mRNA and protein localization domains in the SAM. However, the STM mRNA and protein localization domains are not obviously different in Arabidopsis, and the functional relevance of STM mobility is unknown. Using a non‐mobile version of STM (2xNLS‐YFP‐STM), we show that STM mobility is required to suppress axillary meristem formation during embryogenesis, to maintain meristem size, and to precisely specify organ boundaries throughout development. STM and organ boundary genes CUP SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3 regulate each other during embryogenesis to establish the embryonic SAM and to specify cotyledon boundaries, and STM controls CUC expression post‐embryonically at organ boundary domains. We show that organ boundary specification by correct spatial expression of CUC genes requires STM mobility in the meristem. Our data suggest that STM mobility is critical for its normal function in shoot stem cell control.  相似文献   

9.
The homeobox gene family plays a crucial role during the development of multicellular organisms. The KNOTTED-like genes from Arabidopsis thaliana (KNAT6 and KNAT2) are close relatives of the meristematic genes SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS, but their function is not currently known. To investigate their role, we identified null alleles of KNAT6 and KNAT2. We demonstrate that KNAT6 contributes redundantly with STM to the maintenance of the shoot apical meristem (SAM) and organ separation. Consistent with this role, the expression domain of KNAT6 in the SAM marks the boundaries between the SAM and cotyledons. The lack of meristematic activity in the knat6 stm-2 double mutant and the fusion of cotyledons were linked to the modulation of CUP-SHAPED COTYLEDON (CUC) activity. During embryogenesis, KNAT6 is expressed later than STM and CUC. In agreement with this fact, CUC1 and CUC2 were redundantly required for KNAT6 expression. These data provide the basis for a model in which KNAT6 contributes to SAM maintenance and boundary establishment in the embryo via the STM/CUC pathway. KNAT2, although the closest related member of the family to KNAT6, did not have such a function.  相似文献   

10.
Critical developmental and gene expression profiles were charted during the formation of shoots from root explants in Arabidopsis tissue culture. Shoot organogenesis is a two-step process involving pre-incubation on an auxin-rich callus induction medium (CIM) during which time root explants acquire competence to form shoots during subsequent incubation on a cytokinin-rich shoot induction medium (SIM). At a histological level, the organization of shoot apical meristems (SAMs) appears to occur during incubation on SIM about the time of shoot commitment, i.e. the transition from hormone-dependent to hormone-independent shoot development. Genes involved in SAM formation, such as SHOOTMERISTEMLESS (STM) and CLAVATA1 (CLV1), were upregulated at about the time of shoot commitment, while WUSCHEL (WUS) was upregulated somewhat earlier. Genes required for STM expression, such as CUP-SHAPED COTYLEDON 1 and 2 (CUC1 and 2) were upregulated prior to shoot commitment. Gene expression patterns were determined for two GFP enhancer trap lines with tissue-specific expression in the SAM, including one line reporting on CUC1 expression. CUC1 was generally expressed in callus tissue during early incubation on SIM, but later CUC1 was expressed more locally in presumptive sites of shoot formation. In contrast, the expression pattern of the enhancer trap lines during zygotic embryogenesis was more localized to the presumptive SAM even in early stages of embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号