首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Biosynthesis of both ascorbic acid (AsA) and peroxidase activity were induced by light in cv. Sultana grapevine leaves. Induced peroxidase activity mainly involved basic isoenzymes of pI 9.8 and 9.6 and catalyzed the oxidation of flavonoids like quercetin and kaempferol and derivatives of hydroxycinnamic acids such as ferulic and p-coumaric acids, but not AsA. However, the peroxidase-dependent oxidation of ferulic acid and quercetin was temporarily suppressed by AsA as long as it remained in the reaction medium. Kinetics and spectroscopic results indicated that AsA was oxidized to dehydroascorbic acid only in the presence of phenols or flavonoids, and did not interfere with the catalytic activity of the peroxidase. Ascorbate peroxidase isoenzymes (APx), whose activities are widely considered central for detoxification of H(2)O(2) in most plant cells, were not detected in grape leaves extracts. The significance of light stimulus on peroxidase activity and leaf AsA content is discussed in terms of a flavonoid-redox cycle proposed as an alternative system to detoxify H(2)O(2) in grapevine leaves.  相似文献   

2.
Previous studies have described that arbuscular mycorrhizal fungi (AMF) can reduce the deleterious effect of Verticillium dahliae Kleb. on pepper growth and yield. In mycorrhizal plants, the bioprotection against soil-borne pathogens can result from the preactivation of defence responses that include some structural modifications and the accumulation of Pathogenesis-Related (PR) proteins. Our first objective was to study if V. dahliae induced defence mechanisms in roots before infected pepper developed visible symptoms of disease. The second aim was to determine if AMF induced defence-related enzymatic activities in pepper roots before or after pathogen’s attack. Results showed that the colonization of pepper roots by Glomus deserticola (Trappe, Bloss and Menge) induced the appearance of new isoforms of acidic chitinases, superoxide dismutase (SOD) and, at early stages, peroxidases. In contrast, V. dahliae neither stimulated the phenylpropanoid pathway nor elicited hydrolytic activities in infected pepper roots. Only in mycorrhizal plants, the inoculation with V. dahliae slightly increased both phenylalanine ammonia-lyase (PAL) and peroxidase activities two weeks later. Mycorrhizal-specific induction of new isoforms of acidic chitinases and SOD together with enhanced peroxidase and PAL activities 2 weeks after pathogen inoculation could be involved in the biocontrol of Verticillium-induced wilt in pepper by AMF.  相似文献   

3.
A phytochemical analysis of cassava (Manihot esculenta Crantz) fresh roots and roots suffering from post-harvest physiological deterioration (PPD) has been carried out. The first isolation and identification of galactosyl diacylglycerides from fresh cassava roots is reported, as well as β-carotene, linamarin, and β-sitosterol glucopyranoside. The hydroxycoumarin scopoletin and its glucoside scopolin were identified from cassava roots during PPD, as well as trace quantities of esculetin and its glucoside esculin. There is no isoscopoletin in cassava roots during PPD.  相似文献   

4.
The activities of the enzymes responsible for cell-wall strengthening and salicylic acid (SA) content in Norway spruce seedlings were investigated after inoculation with the ectomycorrhizal fungus Pisolithus tinctorius or the pathogen Heterobasidion annosum, and after treatment with elicitors from both of these fungi. Inoculation with both fungi increased guaiacol peroxidase (POD) activity in the roots of the pathogen-inoculated seedlings during the earliest phases of colonisation, and induced the activities of several POD isoforms. Two of these were only seen in pathogen-inoculated seedlings and corresponded with increased POD activity against ferulic acid. Colonisation with H. annosum triggered an increase in phenylalanine ammonia lyase (PAL) activity in the roots of the spruce seedlings, which was followed by an accumulation of free SA. One month after inoculation levels of free SA were increased also in the shoots of H. annosum-inoculated seedlings. In contrast increase in free SA content in the roots of P. tinctorius-inoculated seedlings was only transient. Similarly to inoculation, treatment with elicitors of H. annosum increased the PAL and POD activity, as well as SA content in the roots of spruce seedlings. A positive correlation between PAL activity and SA content in the H. annosum-inoculated seedlings and accumulation of SA precursors in the phenylpropanoid pathway indicate that the plant defence mechanisms, during which SA is synthesised through the PAL pathway, are exploited by H. annosum for facilitation of colonisation.  相似文献   

5.
Effector studies with two isoenzymes (I and IV) of glucose-6-phosphate dehydrogenase (G6PDH) from tobacco suspension culture WR-132 revealed that chlorogenic acid, at 0.4 mM, inhibited both isoenzymes almost 100%, with the inhibition decreasing as the concentration of the acid was reduced. At 0.3 and 0.4 mM, the coumarin glucosides scopolin and esculin were inhibitory, whereas their aglucones scopoletin and esculetin were less inhibitory, and at low concentrations of glucose-6-phosphate (G6P), the latter two were actually stimulatory for G6PDH I. Of the possible effectors studied, only scopoletin and esculetin exhibited a significant activation of G6PDH I under these conditions. However, with G6PDH IV these two effectors do not show the same marked activation at the low G6P concentrations. The phenolic acids, caffeic and ferulic, were less inhibitory than the coumarins tested. The activation of G6PDH I by scopoletin, a compound which accumulates in tobacco under certain stress conditions, gives a possible clue as to the resulting enhanced activity of the hexose monophosphate pathway that has been reported for some plants subjected to stress conditions.  相似文献   

6.
Silk of some maize genotypes contains a high level of phenolics that undergo enzymatic oxidation to form quinones, which condense among themselves or with proteins to form brown pigments. Two phenolic oxidizing enzymes, peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; EC 1.10.3.1), from maize (Zea mays L.) silk were characterised with respect to their preferred substrate, different isoforms and specific effectors. One browning silk sample with high, and two non‐browning samples with low phenolic content were investigated. Although POD oxidizes a wide range of phenolic substrates in vitro, its activity rate was independent of silk phenolic content. PPO activity, detected with o‐diphenolic substrates, was abundant only in browning silk, and low or absent in non‐browning silk. Pollination increased POD but not PPO activity. Isoelectric‐focusing (IEF) and specific staining for POD and PPO showed a high degree of polymorphism that varied with silk origin. The IEF pattern of POD revealed a number of anionic and several cationic isoenzymes, with the most pronounced having neutral pI 7 and a basic isoform with pI 10. Detected isoforms of PPO were anionic, except for one neutral form found only in browning silk, and occupied positions different from those of POD. Different inhibitory effects of NaN3, EDTA, KCN, and L‐cysteine, as well as different impacts of a variety of cations on the oxidation of chlorogenic acid, mediated by PPO or POD, were detected. The findings are discussed in terms of a possible roles of these enzymes in defence and pollination.  相似文献   

7.
Scanning electron microscopic (SEM) observation demonstrates the differentiation of mesocarp and endocarp tissues and their lignified nature in dura fruits at 8 weeks after pollination (WAP). During shell formation, the endocarp cells become lignified to a hard shell while the mesocarp tissue remains cellular and fibrous. A transition zone made up of fibrous units was also visible beneath the shell. The soluble phenols of mesocarp and endocarp tissues at their developmental stage was analyzed using Reverse phase high performance liquid chromatography (RP-HPLC). The appearance of ferulic acid at 4 WAP and its absence at 8 WAP indicates the role of ferulic acid in lignin synthesis. The HPLC data was supported by the lignin concentration. To ascertain the biochemical relationship of lignin pathway enzymes, phenylalanine ammonia lyase (PAL), cinnamyl alcohol-NADPH-dehydrogenase (CAD) and peroxidase (POD) with shell synthesis, the activities of these enzymes and lignin content were assessed during development of the shell between 4 and 8 WAP. The three enzymes, PAL, CAD and POD expressed high level of activity in the mesocarp and endocarp at 4 WAP. At 8 WAP a sharp decline in activity was observed in the endocarp whereas the mesocarp showed a moderate reduction. This variation is an indication of the role of these enzymes in shell formation.  相似文献   

8.
A novel peroxidase that catalyses the transformation of caffeic acid and ferulic acid via oxidative coupling was purified from callus cultures of Bupleurum salicifolium petioles. The enzyme, which was purified over 2,900-fold, is a glycoprotein with a molecular weight of 38,000, determined by SDS/PAGE and gel filtration. The K(m) values obtained were 2.4x10(-4) M for caffeic and 2.6x10(-4) M for ferulic acid, while the K(m) values for H2O2 with caffeic acid was 4x10(-5) M and for H2O2 with ferulic acid was 4.8x10(-4) M. The purified peroxidase exhibits lower activity with typical peroxidase substrates (guaiacol and pyrogallol) than it does with caffeic and ferulic acids, but does not exhibit any activity with other phenylpropanoids tested (cinnamic acid, coumaric acid, and 3,4-dimethoxycinnamic acid).  相似文献   

9.
Interaction of tomato roots with Trichoderma virens TRS106 provided protection against Rhizoctonia solani-induced disease. In tomato, plants inoculated with R. solani disease symptoms were observed on the roots as brown, necrotic lesions. These symptoms were limited on plants treated with TRS106 and inoculated with R. solani. It was shown that TRS106 did not directly inhibit Rhizoctonia growth in in vitro test. The tested Trichoderma isolate stimulated systemic defence responses in tomato plants, by activating defence enzymes including guaiacol peroxidase (GPX), syringaldazine peroxidase (SPX) and phenylalanine ammonia lyase (PAL). Simultaneously, it enhanced accumulation of phenolics and hydrogen peroxide (H2O2) accompanied by decrease in lipid peroxidation in the leaves. HPLC analysis indicated remarkable increases in the concentrations of 22 phenolics in the leaves of Trichoderma-treated tomato, both uninoculated and inoculated with R. solani. Some of the phenolics were present in a free form, the others were accumulated in a bound form as glycosylated conjugates belonging to phenylpropanoids, hydroxybenzoic and cinnamic acid derivatives and flavonoids. Several of the detected phenolics: ferulic and salicylic acids, pyrocatechol and hesperetin were strongly toxic to R. solani in plate tests. The systemic mobilisation of phenolic metabolism might be an element of tomato defence response positively involved in biocontrol of R. solani by TRS106. Based on the results, T. virens TRS106 may have potential to develop a new biofungicide for integrated management of R. solani-induced disease.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号