首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore and review the taxonomic distribution of morphological features that may be used as supporting apomorphies for the monophyletic status of various taxa in future, more comprehensive phylogenetic analyses of the dendrocoelid freshwater planarians and their close relatives. Characters examined are: (i) musculature of the pharynx; (ii) anatomy of the eye; (iii) distribution of testis follicles along the longitudinal axis of the body; (iv) epidermis of the body wall; (v) musculature of the ventral body wall; (vi) presence or absence of a penis papilla; (vii) position of the mouth opening; and (viii) anterior adhesive organ. A phylogenetic hypothesis, in the form of a character state tree, is developed. This hypothesis suggests that the Kenkiidae should be resurrected as a separate family, sharing a sistergroup relationship with the Dendrocoelidae. This sistergroup relationship is supported by the shared presence of an apomorphic anterior adhesive organ. Although the shape of the anterior adhesive organ, both within and between kenkiids and dendrocoelids, may differ considerably between species, they are all constructed according to the same principles. The monophyly of the Kenkiidae is supported by the presence of an apomorphic thickening of the marginal zone of the epidermis and presumably also by the presence of prepharyngeal testes. Within the Kenkiidae, the genus Macrocotyla should be considered as a junior synonym of Kenkia, which is characterized by the presence of an apomorphic ‘planariid pharynx‐type 2’. The monophyly of the Dendrocoelidae is suggested by the presence of a dendrocoelid type of pharynx. It is shown that multicellular eye cups with numerous photoreceptor cells are not restricted to the Dugesiidae and the Terricola but are also characteristic for the Dendrocoelidae; the phylogenetic implications of this character state distribution are discussed. It is pointed out that in planarians there may be a relationship between: (i) body size, the size of an eye cup and the number of its constituent pigment cells; and (ii) the size of an eye cup and the number of photoreceptor cells that it contains. Some tentative phylogenetic groups are suggested on the basis of the following presumed apomorphic characters: presence of transverse fibres in the ventral subepidermal musculature, presence of an extra longitudinal muscle layer in the outer pharynx musculature, a mouth opening that has shifted anteriad. It is suggested that the presumed monophyly of the genus Bdellocephala is supported by the apomorphic absence of a penis papilla, combined with a penial lumen provided with many plicae.  相似文献   

2.
Osteological and myological characters of the genus Perryena are described and the phylogenetic position of the genus is inferred cladistically on the basis of 89 character transformation series, with Perryena representing a branch off a clade comprising the Tetrarogidae, Synanceiidae, Aploactinidae, Congiopodidae, Gnathanacanthidae and Pataecidae, following an initial divergence of the family Apistidae. Perryena is not closely related to Congiopodidae, despite its historical referral to that family. In keeping with the familial rankings given to successive branches of the remaining ingroup, the new family name Perryenidae is proposed for Perryena, here designated as the type genus of the family.  相似文献   

3.
The phylogenetic relationships of the family Trichodontidae and suborder Cottoidei (and zoarcoid Bathymasteridae) are reconstructed morphologically. The monophyly of the Trichodontidae, Cottoidei, and Zoarcoidei is unambiguously supported by 14 synapomorphies, including 1 newly recognized (and also 4 synapomorphies when ACCTRAN is accepted). It is assumed that the Trichodontidae is deeply nested within the Cottoidei, and the family and Cottoidea plus Cyclopteroidea have a sister relationship, supporting a previously inferred molecular phylogenetic hypothesis. We propose that the Trichodontidae is placed into the cottoid superfamily Trichodontoidea.  相似文献   

4.
The Palaeacanthocephala is traditionally represented by 2 orders, Echinorhynchida and Polymorphida, with 10 and 3 families, respectively. To test the monophyly of the class, these 2 orders, and certain families, phylogenies were inferred using nuclear small-subunit (SSU) and large-subunit (LSU) ribosomal DNA sequences obtained for 29 species representing 10 families, 2 other classes of acanthocephalans, and 3 rotifer outgroups. Phylogenetic relationships were inferred by analyzing combined SSU and LSU sequences using maximum parsimony (MP) and maximum likelihood (ML) methods. Parsimony and ML trees inferred from combined analysis of these rDNA data strongly supported monophyly of Palaeacanthocephala and provided good resolution among species. Neither Polymorphida nor Echinorhynchida was monophyletic. Gorgorhynchoides bullocki (Echinorhynchida) was nested within the 6 species representing Polymorphida, and this clade was nested within species representing Echinorhynchida. Three of 4 palaeacanthocephalan families that could be evaluated were not monophyletic, and this finding was strongly supported. These results indicate that the family level classification of palaeacanthocephalans, which is mainly based on combinations of shared characters (not shared derived characters), needs to be reevaluated with respect to comprehensively sampled phylogenetic hypotheses.  相似文献   

5.
We conducted phylogenetic analyses using two DNA sequence data sets derived from matK, the maturase-coding gene located in an intron of the plastid gene trnK, and the internal transcribed spacer region of 18S–26S nuclear ribosomal DNA to examine relationships in subtribe Aeridinae (Orchidaceae). Specifically, we investigated (1) phylogenetic relationships among genera in the subtribe, (2) the congruence between previous classifications of the subtribe and the phylogenetic relationships inferred from the molecular data, and (3) evolutionary trends of taxonomically important characters of the subtribe, such as pollinia, a spurred lip, and a column foot. In all, 75 species representing 62 genera in subtribe Aeridinae were examined. Our analyses provided the following insights: (1) monophyly of subtribe Aeridinae was tentatively supported in which 14 subclades reflecting phylogenetic relationships can be recognized, (2) results are inconsistent with previous classifications of the subtribe, and (3) repeated evolution of previously emphasized characters such as pollinia number and apertures, length of spur, and column foot was confirmed. It was found that the inconsistencies are mainly caused by homoplasy of these characters. At the genus level, Phalaenopsis, Cleisostoma, and Sarcochilus are shown to be non-monophyletic.  相似文献   

6.
7.
Increased mitochondrial (mt) genomes can provide more sets of genome‐level characteristics for resolving deeper phylogeny. Limited information with respect to the Trochoidea mitochondrial genome organization is available; besides, monophyly and internal relationships of the superfamily still remain a matter of discussion. To resolve the monophyly and internal phylogenetic controversies of Trochoidea and expand our understanding for mt genomic characteristic evolution among Trochoidea, the phylogenetic trees were reconstructed using 13 newly sequenced complete mt genomes and 35 genomes from GenBank, and both the maximum likelihood and Bayesian inference analyses were highly supported. Vetigastropoda phylogenetic analyses recovered the monophyly of Trochoidea. Trochoidea phylogenetic analyses and genetic distances supported the non‐monophyly of Tegulidae and Tegula, indicating that the taxonomic status of several genera (Rochia, Tectus and Cittarium) should be revised and Tegula, Omphalius and Chlorostoma should be placed as a same genus. The close affinity between Tectus virgatus and Rochia was also revealed. Three‐nucleotide insertion in nad1, nine‐nucleotide insertion and six‐nucleotide deletion in nad5 are detected in Tegulidae, Tectus and Rochia, respectively. Gene orders within Trochoidea are stable, with gene rearrangements exclusive to tRNA genes observed. Homoplasious convergences because of trnT rearrangement display translocation in Turbinidae and reversion in Trochidae and Calliostomatida. For trnE and trnG, we identify 11 arrangement types, suggesting that the gene rearrangement history needs to be further evaluated. Our study emphasizes the importance of mt genomes in resolving phylogenetic relationships within Trochoidea. In addition, the mt genomic characters would contribute new insights into the classification of Trochoidea.  相似文献   

8.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

9.
We present phylogenetic analyses (parsimony, maximum likelihood and Bayesian inference) for 69 lineages of anthoathecate hydroids based on 18 morphological characters (12 proposed for the first time) plus mitochondrial (16S and COI) and nuclear (18S and 28S) molecular markers. This study aims to test the monophyly of the present concept of the family Bougainvilliidae, assessing its phylogenetic position within Hydroidolina. Our working hypothesis is used as a context for inferring the evolution of certain morphological characters, focusing on the exoskeleton. Our results shed light on some phylogenetic uncertainties within Hydroidolina, delimiting eight well‐supported linages, viz. Hydroidolina, Siphonophorae, Leptothecata, Aplanulata, Filifera II, Filifera III, Capitata and Pseudothecata taxon novum, the latter supported by four morphological synapomorphies. The monophyly of several families was not supported, viz. Bougainvilliidae, Cordylophoridae, Oceaniidae, Rathkeidae and Pandeidae. Some of the genera typically considered in Bougainvilliidae, including Bougainvillia, fell into the clade Pseudothecata, which is consistently reconstructed as the sister group of Leptothecata. We formally suggest that Dicoryne be removed from Bougainvilliidae and placed in the resurrected family Dicorynidae. The exoskeleton was a key feature in the diversification of Hydroidolina, especially with the transition from the bare hydranth to one completely enveloped within the exoskeleton. In this context, bougainvilliids exhibit several intermediate states in the development of the exosarc. Although the concatenated analysis unravels some interesting hypotheses, taxon sampling is still deficient and therefore more data are necessary for achieving a more complete understanding of the evolution and ecology of bougainvilliids and their allies.  相似文献   

10.
Lebedev, V.S., Bannikova, A.A., Pagès, M., Pisano, J., Michaux, J.R. & Shenbrot, G.I. (2012). Molecular phylogeny and systematics of Dipodoidea: a test of morphology‐based hypotheses. —Zoologica Scripta, 42, 231–249. The superfamily Dipodoidea (Rodentia, Myomorpha) in its current interpretation contains a single family subdivided into six subfamilies. Four of them include morphologically specialized bipedal arid‐dwelling jerboas (Dipodinae – three‐toed jerboas, Allactaginae – five‐toed jerboas, Cardiocraniinae – pygmy jerboas and Euchoreutinae – long‐eared jerboas), the other two are represented by more generalized quadrupedal taxa (Zapodinae – jumping mice and Sminthinae – birch mice). Despite considerable effort from morphologists, the taxonomy as well as the phylogeny of the Dipodoidea remains controversial. Strikingly, molecular approach has never been envisaged to investigate these questions. In this study, the phylogenetic relationships among the main dipodoid lineages were reconstructed for the first time using DNA sequence data from four nuclear genes (IRBP, GHR, BRCA1, RAG1). No evidence of conflict among genes was revealed. The same robustly supported tree topology was inferred from the concatenated alignment whatever the phylogenetic methods used (maximum parsimony, maximum‐likelihood and Bayesian phylogenetic methods). Sminthinae branches basally within the dipodoids followed by Zapodinae. Monophyletic Cardiocraniinae is sister to all other jerboas. Within the latter, the monophyly of both Dipodinae and Allactaginae is highly supported. The relationships between Dipodinae, Allactaginae and Euchoreutinae should be regarded as unresolved trichotomy. Morphological hypotheses were confronted to findings based on the presented molecular data. As a result, previously proposed sister group relationships between Euchoreutes and Sicista, Paradipus and Cardiocraniinae as well as the monophyly of Cardiocaniinae + Dipodinae were rejected. However, the latter association is consistently supported by most morphological analyses. The basis of the obvious conflict between genes and morphology remains unclear. Suggested modifications to the taxonomy of Dipodoidea imply recognition of three families: Sminthidae, Zapodidae and Dipodidae, the latter including Cardiocraniinae, Euchoreutinae, Allactaginae and Dipodinae as subfamilies.  相似文献   

11.
The phylogenetic relationships of the family Pinguipedidae plus the genus Cheimarrichthys von Haast, 1874, were studied to redefine the family. Based on a phylogenetic analysis using derived characters belonging to 21 transformation series, accepting the monophyly of Pinguipedidae plus Cheimarrichthys provisionally for the operational procedure of the analysis, it was hypothesized that Cheimarrichthys is not closely related to Parapercis Bleeker, 1863, although these genera had been considered as having a close affinity. Although the Pinguipedidae and Cheimarrichthys share nine derived characters, it was determined that these characters are also found in other trachinoid families. In addition, several families, such as the Leptoscopidae, Uranoscopidae, and Trichodontidae, have many more derived characters in common with Cheimarrichthys than the pinguipedids have with that genus. The conclusion drawn here is that it is not parsimonious to recognize the monophyly of the Pinguipedidae and Cheimarrichthys based on these nine derived characters, and that these characters are not compelling enough to link these groups. The redefined Pinguipedidae is proposed to include the following five genera: Parapercis, Prolatilus Gill, 1865, Pinguipes Cuvier, 1829, Pseudopercis de Miranda-Ribeiro, 1903, and Kochichthys Kamohara, 1960. Cheimarrichthys, excluded from the Pinguipedidae, is put into its own family, Cheimarrichthyidae.  相似文献   

12.
Ariid monophyly and intrafamilial relationships are investigated based on cladistic analysis of 230 morphological characters. Terminal taxa examined include whenever possible type‐species, or the most morphologically similar species to the type‐species of the nominal genera, and the largest possible number of species, including cleared and stained specimens, available in zoological collections. Previous hypotheses about monophyly of the Ariidae are strongly corroborated by new synapomorphies discovered in the present study. The subfamily Galeichthyinae and the remaining ariids are strongly supported by new morphological characters. The monotypic subfamily Bagreinae is recognized as the sister group to all nongaleichthyin ariids, supported by a large series of exclusive synapomorphies. A new concept of Ariinae is presented: the subfamily is found to be unequivocally monophyletic and includes all ariid genera, except Galeichthys and Bagre. New data supporting the monophyly of the genera included in the Ariinae are introduced and previous hypotheses of monophyly, species composition, morphological definition, and relationships are reviewed and discussed.  相似文献   

13.
In this study a multilocus phylogenetic analysis of metalmark moths (Lepidoptera: Choreutidae) focused on resolving the higher‐level phylogeny of this group is presented. Through the analysis of this dataset, I explore different data‐partitioning strategies in Bayesian phylogenetic inference, and find that a partitioning strategy can have a large influence on the results of phylogenetic analysis. Depending on how the data are partitioned, there can be significant differences in branch support. I also test for the existence of the Bayesian star tree paradox, and its importance in this dataset, and find that it appears to inflate support for the clade including Rhobonda gaurisana, Hemerophila houttuinialis, H. diva and H. felis, but plays no role in other cases where the differences between maximum‐likelihood bootstraps and Bayesian posterior probabilities are large. The results of all the phylogenetic analyses strongly suggest that including Millieriinae in Choreutidae renders the family polyphyletic. The monophyly of the other two subfamilies, Brenthiinae and Choreutinae, as well as their sister‐group relationship, is strongly supported. Similarly, the monophyly of all the genera examined except Hemerophila is also well supported. To bring the classification of Choreutidae in line with our current understanding of the phylogenetic relationships in the family, I propose to exclude Millieriinae from Choreutidae, elevate it to Millieriidae Heppner, and place it as incertae sedis within Ditrysia.  相似文献   

14.
Abstract. Sixty-nine characters of larval structure of twenty-eight genera of the supertribe Trechitae (Coleoptera: Carabidae) were analysed phylogenetically. The monophyly of Trechitae is strongly supported with five unique synapomorphies. The monophyly of Zolini + Bembidiini + Pogonini is supported with two synapomorphies. We propose that the tribe Trechini is a sister group to them and its monophyly is supported with two unique synapomorphies. The inferred branching pattern of Trechini genera is (Perileptus + Thalassophilus) + (Amblystogenium + (Trechimorphus + (Trechus + Epaphius + Aepopsis + Trechisibus))); Perileptus is a member of Trechodina rather than Trechina. The monophyly of Zolini is not supported. The monophyly of Pogonini is supported with two unique synapomorphies; its sister group relationships remain obscure; the branching pattern of pogonine genera is (((Pogonus + Pogonistes) + Cardiaderus) + Thalassotrechus). No evidence for monophyly of the tribe Bembidiini (s. lato; including subtribes Bembidiina, Tachyina, Xystosomina, and Anillina) was found. The relationships of Phrypeus are obscure; no evidence could be found linking it with Bembidiina. Without Phrypeus, Bembidiina might be a monophylum with a single synapomorphy. Sinechostictus branches basal of (Bembidion + Asaphidion) and therefore should be treated as a separate genus. Tachyina and Xystosomina form a monophylum based on two unique synapomorphies; a close relationship with a monophyletic Anillina is suggested. Reduction of the number of claws from two to one in Trechitae has taken place twice: within Trechina (Trechus, Epaphius, Aepopsis and Trechisibus) and in (Zolini + Bembidiini + Pogonini). The previously unknown larvae of the isolated genus Phrypeus are described and illustrated. A key to all twenty-eight analysed Trechitae genera based on characters of larvae and a list of larval autapomorphies for each genus are provided.  相似文献   

15.
Echinocereus is a morphologically diverse genus that includes 64 species grouped into eight taxonomic sections based on morphological traits. In previous molecular phylogenetic analyses, the relationships amongst Echinocereus species were not entirely revealed and useful characters to recognize clades were not provided. The inclusion of several sources of evidence in a phylogenetic analysis is likely to produce more supported hypotheses. Therefore, we performed a combined phylogenetic analysis with a set of 44 morphological characters and six chloroplast DNA sequences. Topologies from parsimony and Bayesian analyses were mostly congruent. However, the relationships of E. poselgeri were not consistent between analyses. A second Bayesian analysis using a long-branch extraction test resulted in a topology with the morphological position of E. poselgeri congruent with that in parsimony analysis. Parsimony and Bayesian analyses corroborated the monophyly of Echinocereus, which included eight monophyletic groups. The combined phylogeny integrated into different clades those taxa that were not determined in previous analyses and changed the relationships of some recognized clades. The clades did not recover the recent infrageneric classification. In the present study, a new sectional classification for Echinocereus is proposed based on the eight recovered clades, which is supported by a combination of morphological and molecular characters. An identification key for sections in the genus is included.  相似文献   

16.
The phylogenetic relationships among two Paracyprichromis and five Cyprichromis species, included in the Tanganyikan cichlid tribe Cyprichromini, were investigated using morphological features. The previously proposed diagnostic characters of Paracyprichromis are not synapomorphies, because the nonelongated swim bladder is plesiomorphic, the numbers of dorsal and anal fin rays and scales on longitudinal line and around the caudal peduncle overlap with those of Cyprichromis, and these counts and number of vertebrae are all included within the ranges of other Tanganyikan cichlids. The monophyly of Paracyprichromis is supported by a unique condition of infraorbitals to this genus. Additionally, the monophyly of Cyprichromis was reconfirmed by one of the previously proposed diagnostic characters, the presence of an elongated swim bladder.  相似文献   

17.
The phylogeny of the green algal Order Dasycladales was inferred by maximum parsimony and Bayesian analyses of chloroplast‐encoded rbcL sequence data. Bayesian analysis suggested that the tribe Acetabularieae is monophyletic but that some genera within the tribe, such as Acetabularia Lamouroux and Polyphysa Lamouroux, are not. Bayesian analysis placed Halicoryne Harvey as the sister group of the Acetabularieae, a result consistent with limited fossil evidence and monophyly of the family Acetabulariaceae but was not supported by significant posterior probability. Bayesian analysis further suggested that the family Dasycladaceae is a paraphyletic assemblage at the base of the Dasycladales radiation, casting doubt on the current family‐level classification. The genus Cymopolia Lamouroux was inferred to be the basal‐most dasycladalean genus, which is also consistent with limited fossil evidence. Unweighted parsimony analyses provided similar results but primarily differed by the sister relationship between Halicoryne Lamouroux and Bornetella Munier‐Chalmas, thus supporting the monophyly of neither the families Acetabulariaceae nor Dasycladaceae. This result, however, was supported by low bootstrap values. Low transition‐to‐transversion ratios, potential loss of phylogenetic signal in third codon positions, and the 550 million year old Dasycladalean lineage suggest that dasyclad rbcL sequences may be saturated due to deep time divergences. Such factors may have contributed to inaccurate reconstruction of phylogeny, particularly with respect to potential inconsistency of parsimony analyses. Regardless, strongly negative g1 values were obtained in analyses including all codon positions, indicating the presence of considerable phylogenetic signal in dasyclad rbcL sequence data. Morphological features relevant to the separation of taxa within the Dasycladales and the possible effects of extinction on phylogeny reconstruction are discussed relative to the inferred phylogenies.  相似文献   

18.
Male genitalia are among the most rapidly evolving and divergent morphological structures and sexual selection is known to drive this phenomenon in many taxa. Because of their diversity, even within a single genus, genital characters are frequently used to infer relationships among closely‐related species. Moths within the genus Izatha (Xyloryctidae) are ideal candidates for investigating the phylogenetic patterns of genital evolution as they display great variation in male genital structure and complexity. We determined the evolutionary relationships among 31 species of Izatha by constructing a molecular phylogeny of the genus based on the mitochondrial cytochrome oxidase subunit I gene and the isocitrate dehydrogenase and carbamoylphosphate synthase domain protein nuclear genes. This allowed estimations of ancestral male genital character states and patterns of male genital diversification using maximum‐likelihood models. The genus is divided into two well‐supported clades and two poorly supported clades at the root of the phylogeny with incomplete phylogenetic resolution within two species groups, likely due to rapid speciation. Izatha display a number of apomorphic phallic traits including cornuti (sclerotized spines) which are either discharged into the female during copulation (deciduous cornuti) or fixed to the male phallus (compound and fish‐hook cornuti). Within the genus, there is a reduction of secondary genital characters – the uncus and gnathos – but an elaboration of another grasping structure, the juxta; the potential origin and functionality of these male genital traits are discussed. Overall, some male genital characters provided a good indication of species relationships; however, several parts of the complex male genitalia of Izatha show evidence of homoplasy and convergence highlighting the problems of using these traits in determining species relationships. Additionally, this convergence has highlighted that complex genital structures may evolve repeatedly and independently within a lineage.  相似文献   

19.
20.
Therevidae (stilleto flies) are a little-known family of asiloid brachyceran Diptera (Insecta). Separate and combined phylogenetic analyses of 1200 bases of the 28S ribosomal DNA and 1100 bases of elongation factor-1α were used to infer phylogenetic relationships within the family. The position of the enigmatic taxon Apsilocephala Kröber is evaluated in light of the molecular evidence. In all analyses, molecular data strongly support the monophyly of Therevidae, excluding Apsilocephala, and the division of Therevidae into two main clades corresponding to a previous classification of the family into the subfamilies Phycinae and Therevinae. Despite strong support for some relationships within these groups, relationships at the base of the two main clades are weakly supported. Short branch lengths for Australasian clades at the base of the Therevinae may represent a rapid radiation of therevids in Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号