首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 154 毫秒
1.
介绍了Granier热消散探针在树干液流测定中的工作原理,并利用该系统长期监测广东鹤山马占相思林14株样树的液流密度,分析了树木个体内和个体之间液流密度的差异、整树和林段水分利用的量化特征.由于树木边材结构以及周围微环境的差别,树木内和个体间的液流密度差异非常明显,变异系数的平均值分别为15.51%-37.26%、37.46%-50.73%.尽管液流密度的差异较大,但同一株树木不同方位的液流密度之间却呈现明显的线性相关(p<0.0001),这是重要的特征值,使得只需测定某一方位的液流密度经尺度外推计算整树和林段蒸腾成为可能.树木液流对环境因子响应的变化规律取决于所参照的时间尺度,日变化主要受光辐射、水汽压差等气候因子的控制,而土壤水份对液流的季节变化影响较大.形态特征明显影响树木的液流,高大树木由于边材较厚、树干粗壮和冠幅较宽而承载较多的辐射能量,因而水分蒸腾较高.对树木液流密度在径向和方位上进行适当的整合,可较准确地计算整树和林段蒸腾.由液流估测的马占相思整树和林段蒸腾的结果显示,该群落的水分利用在时间和空间上均有明显的分化.  相似文献   

2.
量化林分蒸腾对大气蒸发需求和土壤供水变化的响应能更好预测林分水分利用和水分循环特征并深化对林水关系的认识。本研究以六盘山南侧的香水河小流域的华北落叶松人工林为研究对象,采用热扩散探针法监测树干液流,同步测定环境因子,分析林分蒸腾对潜在蒸散和土壤体积含水率变化的响应关系。结果表明: 林分蒸腾对土壤体积含水率变化响应的曲线在不同潜在蒸散水平下基本相似,即随土壤体积含水率增大,林分蒸腾先快速后缓慢增大,达到阈值后趋于平稳,该过程可用饱和指数增长函数得到较好的拟合;但土壤水分阈值存在差异,且阈值随潜在蒸散的升高而增大。林分日蒸腾量随潜在蒸散增加的变化遵循抛物线曲线,也存在阈值效应。采用连乘方式耦合了生长季中期林分蒸腾响应土壤体积含水率和潜在蒸散的关系,形成了同时考虑土壤供水能力和大气蒸发潜力影响的林分蒸腾模型,该模型能很好地估测蒸腾的日变化,可为人工林水分调控管理提供指导。  相似文献   

3.
用热脉冲速度记录仪(HPVR)测定树干液流   总被引:28,自引:0,他引:28  
树木蒸腾耗水是环境生态平衡(水分)的重要因素。由于树体高大,环境、时间、空间变异因素复杂,测定工作十分困难。在林木生态系统中,水分运动的途径是,树木根部吸收土壤水分,通过树干(木质部上升液流)输送到树冠部,从叶表面蒸腾散失到大气中,即所谓“土壤-植物-大气连续系统”。在此过程中,树干是水流通道的咽喉部位,树干液流量的大小制约着冠部蒸腾量的变化。因此,可以用测定树干部液流的方法确定树冠的蒸腾耗水  相似文献   

4.
永定河沿河沙地杨树人工林蒸腾耗水特征及其环境响应   总被引:7,自引:0,他引:7  
杨树是我国北方最常见的人工造林树种之一。一直以来在干旱、半干旱地区,速生杨树用材林和生态防护林的耗水问题备受关注。研究不同生长发育阶段杨树人工林蒸腾耗水及其对各环境因子的响应对于实现杨树人工林可持续经营具有重要价值。采用树干液流法结合微气象观测系统和土壤水分观测,在2010—2011年对位于北京南郊大兴林场、林龄为13a的杨树人工林林分蒸腾耗水和环境因子进行了同步观测,以期能够探究该林分的蒸腾耗水及其对环境因子的响应。结果表明,树干液流密度(Js)日变化呈明显的单峰曲线,单株样木耗水量随着胸径的增加而增大。在半小时尺度上,单株树木Js与浄辐射(Rn)、饱和水气压差(VPD)存在时滞,这种时滞现象随土壤水分条件不同而变化。林分蒸腾耗水总量在2010和2011年生长季内分别为113.7 mm和174.8 mm,占同期降雨的30.2%和36.9%,与该杨树人工林前期研究相比,随着林龄的增长2010—2011年的蒸腾量呈减小趋势。日尺度上,该人工林蒸腾耗水与净辐射(Rn)、饱和水汽压差(VPD)和土壤体积含水率(SWC)显著相关,在不同土壤水分条件下Rn与林分蒸腾的相关关系发生变化,而VPD过高会对林分蒸腾产生抑制。林分月蒸腾和年总蒸腾主要取决于同期降雨量,因此,降雨年际差异较大时,蒸腾的年际变化也相应较大。  相似文献   

5.
半干旱区城市环境下油松林分蒸腾特征及其影响因子   总被引:2,自引:0,他引:2  
在城市环境下,由于不透水地面面积的增加,土壤-植物-大气之间水汽循环减弱,水汽调节能力差,因而研究城市树木蒸腾对环境因子的响应对于城市进行合理的水汽调节具有重要意义。于2017年生长季,在内蒙古呼和浩特市区树木园内选择58年生油松(Pinus tabulaeformis Carr.)作为研究树种,采用热扩散法测定其树干液流,并同步监测气象因子和土壤含水量变化,利用彭曼公式计算冠层气孔导度。结果表明:(1)生长季内,油松林分蒸腾存在明显日、月变化,晴天天气下林分蒸腾日变化呈单峰曲线,月林分蒸腾量5月最大,其次是7月、8月、6月和9月,分别为20.96、19.89、18.09、17.25 mm和7.49 mm。(2)油松林分蒸腾与饱和水汽压差、太阳总辐射、土壤含水量和风速均存在极显著相关关系(P0.01),太阳总辐射、饱和水汽压差和土壤含水量是影响林分蒸腾的主要环境因子(R~2=0.47、R~2=0.31和R~2=0.16),风速对林分蒸腾的影响程度最小(R~2=0.12);不同降雨量对林分蒸腾的影响作用不同,10 mm以上的日降雨量对油松林分蒸腾作用明显。(3)除环境因子外,油松叶片气孔通过响应环境变化控制蒸腾作用,当饱和水汽压差1.5 kPa时,叶片气孔对饱和水汽压差的响应更敏感;当太阳总辐射250 W/m~2时,叶片气孔对蒸腾起促进作用,超过该阈值,叶片气孔关闭从而抑制树木蒸腾。  相似文献   

6.
马占相思林冠层气孔导度对环境驱动因子的响应   总被引:16,自引:4,他引:12  
利用Granier热消散探针在2003年10月测定了广东鹤山丘陵地马占相思林14株样树的树干液流,同时监测林冠上方的光合有效辐射、空气湿度和气温,结合树木的形态和林分的结构特征,计算马占相思的整树蒸腾(E)、林分总蒸腾(Et)以及冠层平均气孔导度(gc),分析树形特征与整树水分利用的关系、冠层气孔导度对光合有效辐射(PAR)和空气水汽压亏缺(D)的响应.结果表明,整树蒸腾与胸径(P<0.0001)、边材面积(P<0.0001)和冠幅(P=0.0007)以自然对数的形式、与树高(P=0.014)以幂函数的形式呈现显著正相关.冠层气孔导度最大值(gcmax)随D的上升呈对数函数下降(P<0.0001),对光合有效辐射的响应则呈双曲线函数增加(P<0.0001).液流测定系统能提供连续和准确的整树和林分蒸腾速率值,经严格数学推导公式计算,最终可求出冠层气孔导度,是研究森林水分利用与环境因子相互关系的有效方法.  相似文献   

7.
以西南喀斯特地区常见的出露基岩生境为研究对象,针对该类生境典型乔木类植物菜豆树和圆叶乌桕,应用TDP热扩散探针技术,结合遮雨试验,分析了植物树干液流对自然降水和连续干旱的响应特征.结果表明:在生长季不同时期,降水后2树种液流密度较降水前均有一定程度的升高,但始终呈现落叶乔木圆叶乌桕高于半落叶乔木菜豆树的特征;连续2个月遮雨条件下,2树种液流密度均无明显降低的趋势,表明2树种均不依赖受近期降水主导的水源;通过对降水前后及连续干旱条件下2树种液流密度与环境因子的拟合关系研究发现,气象因素差异对水分环境变化条件下植物蒸腾耗水的影响较小.自然降水和短时期的连续干旱并未显著改变2树种的蒸腾耗水特征,这可能与出露基岩生境特殊的水分蓄持环境和乔木类植物依赖相对稳定的深层水源有关.  相似文献   

8.
明确同一树种不同起源林分(天然林与人工引种林)间水分利用特征的差异,对于指导林分的可持续经营具有重要意义。本研究以樟子松这一“三北”工程中重要的造林树种为例,选择2种起源的林分为试验林,利用热扩散技术监测了试验林生长季树干边材液流速率(Js),分析樟子松水分传输过程及其与环境因子间的关系。结果表明:在整个生长季的典型晴天下,樟子松人工林的日液流速率(Js-daily)显著高于樟子松天然林,二者Js-daily平均值分别为132.98和114.86 cm·d-1,樟子松人工林表现出了更高的水分传输潜力。在樟子松天然林中,大气水分亏缺(VPD)对树木水分利用过程主要表现为驱动效应,而在樟子松人工林中出现了明显的阈值效应,VPD拐点约在1.91 kPa,此时液流速率(Js-hour)边界函数值接近最大值17.88 cm·h-1。观测期间,2种起源樟子松林受大气驱动的蒸腾潜力(Js-hour/VPD)随土壤干旱的加剧而下降,但樟子松人工林对干...  相似文献   

9.
 介绍了热扩散式液流探针的工作原理及利用液流探针测定树木边材液流速率的方法。利用边材液流探针和多种气象因子传感器及数据采集系统组成的微型气象站,通过对北京西山地区油松(Pinus tabulaeformis)、栓皮栎(Quercus variabilis)混交林林分平均木树干边材液流速率及风速、有效辐射和空气温度、空气相对湿度的日变化和连日变化的测定和分析,揭示了5月干旱季节两树种蒸腾耗水的日变化和连日变化规律,以及栓皮栎树干基部和树冠大枝边材液流的差异,并进行了理论推导,同时分析了液流速率的波动规律与主要气象因素波动的相关性。  相似文献   

10.
刘家霖  满秀玲 《生态学报》2017,37(15):5059-5069
综合利用树干液流法和涡动相关技术,对大兴安岭北部寒温带兴安落叶松(Larix gmelinii)天然林的林木蒸腾(T)和生态系统蒸散发(ET)进行连续监测;采用边材面积对单木蒸腾耗水进行尺度扩展,分析降雨和非降雨日林木总蒸腾(T_(tot))及其蒸腾组分(优势木蒸腾T_d、中等木蒸腾T_i和劣势木蒸腾T_s)与生态系统ET的变化特征,探讨T_(tot)与ET对水汽压亏缺(VPD)和净辐射(R_n)变化的响应。结果表明:降雨和非降雨日各分化等级林木液流速率的日变化均呈典型单峰格局,且降雨日的T_(tot)(9.7mm)低于非降雨日(31.4 mm),同时T_d在降雨和非降雨日均明显高于T_i和T_s。降雨日的ET(24.7 mm)同样低于非降雨日(50.6mm),而潜热通量与同期R_n之比(31%)则高于非降雨日(25.1%),表明非降雨日的环境条件较有利于植物-大气界面的水汽通量交换。降雨日T_(tot)/ET、T_d/ET、T_i/ET和T_s/ET(分别为38.1%、27.2%、8.5%和2.4%)均低于非降雨日(分别为65.0%、45.5%、15.3%和4.2%),说明降雨日的ET以自由水蒸发为主,而非降雨日时则以T_d占优;同时,仅以优势木蒸腾耗水作为平均水平进行尺度上推易高估林分的蒸腾能力。总体上,T_(tot)与VPD、R_n的相关性均较ET的高,即T_(tot)对环境因子的响应略敏感;同时R_n与T_(tot)、ET的相关性均较VPD高,说明R_n是驱动生态系统水汽通量的首要条件。  相似文献   

11.
Rates of water uptake by individual trees in a native Australian forest were measured on the Liverpool Plains, New South Wales, Australia, using sapflow sensors. These rates were up-scaled to stand transpiration rate (expressed per unit ground area) using sapwood area as the scalar, and these estimates were compared with modelled stand transpiration. A modified Jarvis-Stewart modelling approach (Jarvis 1976), previously used to calculate canopy conductance, was used to calculate stand transpiration rate. Three environmental variables, namely solar radiation, vapour pressure deficit and soil moisture content, plus leaf area index, were used to calculate stand transpiration, using measured rates of tree water use to parameterise the model. Functional forms for the model were derived by use of a weighted non-linear least squares fitting procedure. The model was able to give comparable estimates of stand transpiration to those derived from a second set of sapflow measurements. It is suggested that short-term, intensive field campaigns where sapflow, weather and soil water content variables are measured could be used to estimate annual patterns of stand transpiration using daily variation in these three environmental variables. Such a methodology will find application in the forestry, mining and water resource management industries where long-term intensive data sets are frequently unavailable.  相似文献   

12.
We show that sapflow is a useful tool for studies of water fluxes in forest ecosystems, because (i) it gives access to the spatial variability within a forest stand, (ii) it can be used even on steep slopes, and (iii) when combined with eddy correlation measurements over forests, it allows separation of individual tree transpiration from the total water loss of the stand. Moreover, sapflow techniques are quite easy to implement. Four sapflow techniques currently coexist, all based on heat diffusion in the xylem. We found a good agreement between three of these techniques. Most results presented here were obtained using the radial flow meter (Granier 1985). Tree sapflow is computed as sap flux density times sapwood area. To scale up from trees to a stand, measurements have to be made on a representative sample of trees. Thus, a number of trees in each circumference class is selected according to the fraction of sapwood they represent in the total sapwood area of the stand. The variability of sap flux density among trees is usually low (CV. 10–15%) in close stands of temperate coniferous or deciduous forests, but is much higher (35–50%) in a tropical rain forest. It also increases after thinning or during a dry spell. A set of 5–10 sapflow sensors usually provides an accurate estimate of stand transpiration. Transpiration measured on two dense spruce stands in the Vosges mountains (France) and one Scot's pine plantation in the Rhine valley (Germany) showed that maximum rate was related to stand LAI and to local climate. Preliminary results comparing the sapflow of a stand of Pinus banksiana to the transpiration of large branches, as part of the BOREAS programme in Saskachewan, Canada showed a similar trend. For modelling purposes, tree canopy conductance (gc) was calculated from Penman-Monteith equation. In most experiments, calculated canopy conductance was dependent on global radiation (positive effect) and on vapour pressure deficit (negative effect) in the absence of other limiting factors. A comparison of the vapour pressure deficit response curves of gc for several tree species and sites showed only small differences among spruce, oak and pine forests when including understorey. Tropical rainforests exhibited a similar behaviour.  相似文献   

13.
高浓度二氧化碳对植物影响的研究进展   总被引:19,自引:0,他引:19  
工业革命后全球大气CO2浓度持续上升,不仅对全球气候的变迁产生重大影响,而且对植物的形态、水分利用、蛋白质合成、光合、抗性、生长及生物量等都有不同程度的影响。高浓度CO2促进植物根、幼苗的生长,叶片增厚,降低气孔密度、气孔导度及蒸腾速率,增加水分利用效率、作物的产量及生物量,促进乙烯生物合成,增强植物的抗氧化能力。不同光合途径(C3、C4及CAM)及不同植被类型的植物对高浓度CO2的响应不同。长期和短期的高浓度CO2处理,植物响应方式有很大的差异,如短期高CO2处理使光合能力增强,而长期处理则使光合能力下调。  相似文献   

14.
Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips and 1-year-old seedlings) of eastern cottonwoods (Populus deltoides Bartr.), and (2) to determine climatic and physiological driving variables at the Carswell Air Force Base in central Texas, USA. Trichloroethylene (TCE) was detected in shallow (2 to 3 m) groundwater in the early 1980s. Cottonwood whips and 1-year-old potted seedlings were planted in two separate 0.15-ha plantations in spring 1996. Sapflow gauges determined sapflow on 14 to 16 trees in May, June, July, August, and October 1997. Without adjusting for differences in tree size, sapflow rates were greater for 1-year-old trees than whips (peak values were 0.75 and 0.53 kg hr-1 tree-1, respectively). When adjusted for tree size, the pattern reversed, with whips having significantly greater sapflow rates than 1-year-old trees (peak values were 0.053 and 0.045 kg cm-2 hr-1, respectively). Temporal variation (diurnal and seasonal) in sapflow rates was principally related to VPD, solar radiation, and leaf conductance. Extrapolating to the stand and across the growing season, the plantations transpired ~25 cm of water. Early attainment of high levels of transpiration indicates that the stands will transpire considerably more water as leaf area and root exploitation increases with stand development.  相似文献   

15.
Quantifying water use of native vegetation is an important contribution to understanding landscape ecohydrology. Few studies provide long-term (more than one growing season) estimates of water use and even fewer quantify interseasonal and interannual variation in transpiration. Globally, changes in land use are significantly altering landscape ecohydrology, resulting in problems such as dryland salinity and excessive groundwater recharge. Estimating stand water use is complex in multispecies forests, due to the differences in relationships among sapwood area, basal area and tree size for co-occurring species. In this article, we examine seasonal and interannual variation in transpiration rate of the tree canopy of two co-occurring species (a conifer Callitris glaucophylla J. Thompson & L.A.S. Johnson and a broad-leaved Eucalyptus crebra F. Muell.) in an open woodland in eastern Australia. Evapotranspiration of understorey species was measured using an open-top chamber, and tree water use was measured using heat-pulse sap flow sensors. Annual stand transpiration was 309 mm in 2003, a year of below average rainfall, and 629 mm in 2004, a year with higher-than-average rainfall. Despite an almost doubling (522 vs. 1062 mm) of annual rainfall between 2003 and 2004, annual tree water use remained a constant fraction (59%) of rainfall, indicative of compensatory mechanisms linking annual rainfall, leaf area index and tree water use. Deep drainage was estimated to be 4% of rainfall (20.8 mm) in 2003 and 2% (21.2 mm) in 2004, indicating that this native woodland was able to minimize deep drainage despite large interannual variability in rainfall.  相似文献   

16.
Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.  相似文献   

17.
The direct effects of CO2 level changes on plant water availability are usually ignored in plant habitat models. We compare traditional proxies for water availability with changes in soil water (fAWC) predicted by a process-based ecosystem model, which simulates changes in vegetation structure and functioning, including CO2 physiological effects. We modelled current and future habitats of 108 European tree species using ensemble forecasting, comprising six habitat models, two model evaluation methods and two climate change scenarios. The fAWC models' projections are generally more conservative. Potential habitats shrink significantly less for boreo-alpine and alpine species. Changes in vegetation functioning and CO2 on plant water availability should therefore be taken into account in plant habitat change projections.  相似文献   

18.
A model for embolism in the sapflow process was developed, in which embolism is described as a physical process linked to real physical properties of the conduits and the thermodynamic state of water. Different mechanisms leading to embolism and their effect on water relations and especially diurnal diameter changes in a tree were examined. The mechanisms of heterogeneous nucleation, air-seeding, and bubble growth have been considered. The significance of embolism has been revealed here by examining diameter changes, which is an easily measurable quantity under field conditions. The most fundamental effects of embolism on sapflow are decrease in permeability and release of water from embolizing conduits to the transpiration stream. These can be indirectly detected by observing diameter changes. If possible changes in elasticity are not accounted for, embolism generally tends to enhance the amplitude of the diurnal diameter changes due to reduced permeability and increased tensions. In the case of reduced elasticity, embolism gives rise to smaller amplitudes of diameter changes.  相似文献   

19.
In water-limited ecosystems, where potential evapotranspiration exceeds precipitation, it is often assumed that plant invasions will not increase total ecosystem water use, because all available water is evaporated or transpired regardless of vegetation type. However, invasion by exotic species, with high water use rates, may potentially alter ecosystem water balance by reducing water available to native species, which may in turn impact carbon assimilation and productivity of co-occurring species. Here, we document the impact of invasion by an understory exotic woody species (Acacia longifolia) in a semi-arid Mediterranean dune pine forest. To quantify the effects of this understory leguminous tree on the water use and carbon fixation rates of Pinus pinaster we compare an invaded and a non-invaded stand. A. longifolia significantly altered forest structure by increasing plant density and leaf area index in the mid-stratum of the invaded forest. A. longifolia contributed significantly to transpiration in the invaded forest (up to 42%) resulting in a slight increase in stand transpiration in the invaded relative to non-invaded forest. More importantly, both water use and carbon assimilation rates of P. pinaster were significantly reduced in the invaded relative to non-invaded stand. Therefore, this study shows that exotic plant invasions can have significant impacts on hydrological and carbon cycling even in water-limited semi-arid ecosystems through a repartitioning of water resources between the native and the invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号