首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Activation of heat shock factor (HSF) 1-DNA binding and inducible heat shock protein (hsp) 70 (also called hsp72) expression enables cells to resist various forms of stress and survive. Fas, a membrane-bound protein, is a central proapoptotic factor; its activation leads to a cascade of events, resulting in programmed cell death. These two mechanisms with contradictory functions, promoting either cell survival or death, were examined for their potential to inhibit each other's activation. Induction of FAS-mediated signaling was followed by a rapid decrease in HSF1-DNA binding and inducible hsp70 expression. Inhibition of HSF1-DNA binding was demonstrated to be based on absent hyperphosphorylation of HSF1 during FAS signaling. These effects of FAS activation on the HSF1/hsp70 stress response were blocked by ICE (caspase 1) inhibitors, suggesting an ICE-mediated process. Furthermore, inhibition of HSF1/hsp70 was accompanied by an increase in apoptosis rates from 20% to 50% in response to heat stress. When analyzing the effects of HSF1/hsp70 activation on Fas-mediated apoptosis, protection from apoptosis was seen in cells with induced hsp70 protein levels, but not in cells that were just induced for HSF1-DNA binding. Thus, we conclude that inhibition of HSF1/hsp70 stress response during Fas-mediated apoptosis and vice versa may facilitate a cell to pass a previously chosen pathway, stress resistance or apoptosis, without the influence of inhibitory signals.  相似文献   

2.
Superoxide anion is a natural inhibitor of FAS-mediated cell death.   总被引:4,自引:0,他引:4  
The cell surface receptor Fas is a major trigger of apoptosis. However, expression of the Fas receptor in many tumor cell types does not correlate with sensitivity to Fas-mediated cell death. Because a prooxidant state is a common feature of tumor cells, we examined the role of intracellular reactive oxygen intermediates in the regulation of Fas-mediated cytotoxicity. Our results show that an oxidative stress induced by increasing the intracellular superoxide anion (O2-) concentration can abrogate Fas-mediated apoptosis in cells which are constitutively sensitive to Fas. Conversely, an O2- concentration decrease is observed to sensitize cells which are naturally resistant to Fas signals. These observations suggest that intracellular O2- may play a key role in regulating cell sensitivity to a potentially lethal signal and provide tumor cells with a natural, inducible mechanism of resistance to Fas-mediated apoptosis.  相似文献   

3.
4.
Activation of caspases is required in Fas receptor mediated apoptosis. Maintenance of a reducing environment inside the cell has been suggested to be necessary for caspase activity during apoptosis. We explored the possibility to potentiate Fas mediated killing of tumor cells by alpha-lipoic acid (LA), a redox-active drug and nutrient that is intracellularly reduced to a potent reductant dihydrolipoic acid. Treatment of cells with 100 microM LA for 72 h markedly potentiated Fas-mediated apoptosis of leukemic Jurkat cells but not that of peripheral blood lymphocytes from healthy humans. In Jurkat, Fas activation was followed by rapid loss of cell thiols, decreased mitochondrial membrane potential, increased [Ca2+]i and increased PKC activity; all these responses were potentiated in LA pretreated cells. PKCdelta played an important role in mediating the effect of LA on Fas-mediated cell death. In response to Fas activation LA treatment potentiated caspase 3 activation by over 100%. The ability of LA to potentiate Fas mediated killing of leukemic cells was abrogated by a caspase 3 inhibitor suggesting that increased caspase 3 activity in LA-treated Fas-activated cells played an important role in potentiating cell death. This work provides first evidence showing that inducible caspase 3 activity may be pharmacologically up-regulated by reducing agents such as dihydrolipoic acid.  相似文献   

5.
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.  相似文献   

6.
7.
MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis.   总被引:4,自引:0,他引:4  
Although the protease cascade initiated by Fas (CD95, Apo-1) is well characterized, there remains little known about how kinase pathways may impact on Fas-mediated apoptosis. We recently observed that in T lymphocytes Fas strongly induced activation of JNK (c-Jun N-terminal kinase) but not of second messengers leading to activation of ERK (extracellular regulated kinase). Additionally, Fas-mediated apoptosis was significantly inhibited with PMA, a potent activator of the ERK signaling pathway. This suggested a model whereby activation of the ERK pathway might attenuate Fas-mediated apoptosis. This was confirmed in the current study by showing that activation of MEK1, the upstream regulator of ERK, reduces Fas-mediated apoptosis, whereas inhibition of MEK1 augments apoptosis by Fas. Furthermore, Fas-mediated apoptosis of Jurkat T cells is not affected by constitutively active or dominant negative variants that modulate the JNK pathway. These results demonstrate that Fas-induced JNK activation is not required for apoptosis by Jurkat T cells, but rather is more likely secondary to cell stress during the early phases of apoptosis. This is supported by the ability of the caspase blocker zVAD to inhibit both apoptosis and JNK activation by Fas.  相似文献   

8.
The occurrence of apoptosis in thyroid follicular cells induced by Fas activation has been a subject of much debate. This is due, in part, to the fact that no physiologically relevant treatment conditions have been reported to cause rapid and extensive Fas-mediated apoptosis in thyroid cells, whereas treatment with the protein synthesis inhibitor cycloheximide prior to Fas activation allows for massive cell death. This indicates that the Fas signaling pathway is present but that its function is blocked in the overwhelming majority of cultured thyroid cells. To reconcile the conflicting reports, we set out to identify physiologically relevant conditions in which rapid, massive thyroid cell apoptosis in response to Fas activation could be demonstrated. We determined that susceptibility to Fas-activated apoptosis could be influenced by certain combinations of inflammatory cytokines. Although no single cytokine was effective, pretreatment of thyroid cells with the combination of gamma-interferon and either tumor necrosis factor-alpha or interleukin 1beta allowed for massive Fas-mediated apoptosis. Susceptibility to Fas-induced death correlated with an increase in expression of a tunicamycin-inhibitable high molecular weight form of Fas but not with aggregate expression of Fas.  相似文献   

9.
Immunoregulation of lymphocytes and macrophages in the peripheral immune system is achieved in part by activation-induced cell death. Members of the TNF receptor family including Fas (CD95) are involved in the regulation of activation-induced cell death. To determine whether activation-induced cell death plays a role in regulation of dendritic cells (DCs), we examined interactions between Ag-presenting murine DCs and Ag-specific Th1 CD4+ T cells. Whereas mature bone marrow- or spleen-derived DCs expressed high levels of Fas, these DCs were relatively insensitive to Fas-mediated killing by the agonist mAb, Jo-2, as well as authentic Fas ligand expressed on the CD4+ T cell line, A.E7. The insensitivity to Fas-mediated apoptosis was not affected by priming with IFN-gamma and/or TNF-alpha or by blocking the DC survival signals TNF-related activation-induced cytokine and CD40L. However, apoptosis could be induced with C2-ceramide, suggesting that signals proximal to the generation of ceramide might mediate resistance to Fas. Analysis of protein expression of several anti-apoptotic mediators revealed that expression of the intracellular inhibitor of apoptosis Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein was significantly higher in Fas-resistant DCs than in Fas-sensitive macrophages, suggesting a possible role for Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein in DC resistance to Fas-mediated apoptosis. Our results demonstrate that murine DCs differ significantly from other APC populations in susceptibility to Fas-mediated apoptosis during cognate presentation of Ag. Because DCs are most notable for initiation of an immune response, resistance to apoptosis may contribute to this function.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号