首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A number of 1,5-diarylimidazole analogs were synthesized and evaluated their inhibitory activities of cyclooxygenase-2 catalyzed prostaglandin E2 production. Reactions of 1,5-diarylimidazoles with halogenating reagents (NCS, NBS, NIS) afforded halogenated analogs. Among the analogs tested, compounds Ib, IIa, IIb and IIe exhibited significantly improved inhibitory activities against COX-2-mediated PGE2 production from LPS-induced RAW 264.7 cells compared to those of the parent 1,5-diarylimidazoles. Especially, the analogs Ib (IC50 = 0.55 μM) and IIa (IC50 = 0.58 μM) showed best results. Halogenation on the 1,5-diarylimidazole ring enhanced inhibitory activities against COX-2 catalyzed PGE2 production, however, inhibitory activities were significantly varied by position(s) and species of the substituted halogen(s).  相似文献   

2.
A series of twenty indole hydrazone analogs (121) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65 μM. Nine compounds that are 1 (2.23 ± 0.01 μM), 8 (2.44 ± 0.12 μM), 10 (1.92 ± 0.12 μM), 12 (2.49 ± 0.17 μM), 13 (1.66 ± 0.09 μM), 17 (2.25 ± 0.1 μM), 18 (1.87 ± 0.25 μM), 20 (1.83 ± 0.63 μM), and 19 (1.97 ± 0.02 μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05 ± 0.29 μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.  相似文献   

3.
The excitatory amino acid transporters (EAATs) play a pivotal role in regulating the synaptic concentration of glutamate in the mammalian central nervous system. To date, five different subtypes have been identified, named EAAT15 in humans (and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5, respectively, in rodents). Recently, we have published and presented a structure–activity relationship (SAR) study of a novel class of selective inhibitors of EAAT1 (and GLAST), with the analogs UCPH-101 (IC50 = 0.66 μM) and UCPH-102 (IC50 = 0.43 μM) being the most potent inhibitors in the series. In this paper, we present the design, synthesis and pharmacological evaluation of six coumarin-based fluorescent analogs of UCPH-101/102 as subtype-selective inhibitors at EAAT1. Analogs 1114 failed to inhibit EAAT1 function (IC50 values >300 μM), whereas analogs 15 and UCPH-102F inhibited EAAT1 with IC50 values in the medium micromolar range (17 μM and 14 μM, respectively). Under physiological pH no fluorescence was observed for analog 15, while a bright blue fluorescence emission was observed for analog UCPH-102F. Regrettably, under confocal laser scanning microscopy selective visualization of expression of EAAT1 over EAAT3 was not possible due to nonspecific binding of UCPH-102F.  相似文献   

4.
4-Thiazolidinone analogs 1–20 were synthesized, characterized by 1H NMR and EI–MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73–69.65 μM, if compared with standard thiourea having IC50 value of 21.25 ± 0.15 μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34 ± 0.02, 14.62 ± 0.03, 8.43 ± 0.01, 7.3 ± 0.04, 2.31 ± 0.002, 5.75 ± 0.003, 8.81 ± 0.005, and 1.73 ± 0.001 μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies.  相似文献   

5.
A series of substituted (Z)-5-(N-benzylindol-3-ylmethylene)imidazolidine-2,4-dione (3) analogs structurally related to aplysinopsin, and that incorporate a variety of substituents in both the indole and N-benzyl moieties have been synthesized under microwave irradiation and conventional heating methods These analogs were evaluated for their anti-proliferative activity against MCF-7 and MDA-231 breast cancer cell lines, and A549 and H460 lung cancer cell lines. Two analogs, 3f and 3j had IC50 values of 4.4 and 5.2 μM, respectively, compared to 5-fluorouracil (IC50 = 15.2 μM) against MCF-7 cells.  相似文献   

6.
Cathepsins have emerged as potential drug targets for melanoma therapy and engrossed attention of researchers for development and evaluation of cysteine cathepsin inhibitors as cancer therapeutics. In this direction, we have designed, synthesized, and assayed in vitro a small library of 30 low molecular weight functionalized analogs of chalcone hydrazones for evaluating structure–activity relationship aspects and inhibitory potency against cathepsin B and H. The maximum inhibitory effect was exerted by chalcone hydrazones, which are open chain analogues followed by their cyclized derivatives, pyrazolines and pyrazoles. All the synthesized compounds were established as reversible inhibitors of these enzymes. Cathepsin B was selectively inhibited by the compounds in each series. Compounds 1d, 2d and 4d were recognized as most potent inhibitors of cathepsin B in this study with Ki values of 0.042 μM, 0.053 μM and 0.131 μM whereas 1b (Ki = 1.111 μM), 2b (Ki = 1.174 μM) and 4b (Ki = 1.562 μM) inhibited cathepsin H activity effectively. And, preeminent cathepsin B inhibitors were –NO2 functionalized however, –Cl substituted moieties were the most persuasive inhibitors for cathepsin H among all the designed compounds. Molecular docking studies performed using iGemdock provided valuable insights.  相似文献   

7.
Benzothiazole analogs (120) have been synthesized, characterized by EI-MS and 1H NMR, and evaluated for urease inhibition activity. All compounds showed excellent urease inhibitory potential varying from 1.4 ± 0.10 to 34.43 ± 2.10 μM when compared with standard thiourea (IC50 19.46 ± 1.20 μM). Among the series seventeen (17) analogs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, and 18 showed outstanding urease inhibitory potential. Analogs 15 and 19 also showed good urease inhibition activity. When we compare the activity of N-phenylthiourea 20 with all substituted phenyl derivatives (118) we found that compound 15 showed less activity than compound 20 having 3-methoxy substituent. The binding interactions of these active analogs were confirmed through molecular docking.  相似文献   

8.
Thirty N-arylidenequinoline-3-carbohydrazides (130) have been synthesized and evaluated against β-glucuronidase inhibitory potential. Twenty four analogs showed outstanding β-glucuronidase activity having IC50 values ranging between 2.11 ± 0.05 and 46.14 ± 0.95 than standard d-saccharic acid 1,4 lactone (IC50 = 48.4 ± 1.25 μM). Six analogs showed good β-glucuronidase activity having IC50 values ranging between 49.38 ± 0.90 and 80.10 ± 1.80. Structure activity relationship and the interaction of the active compounds and enzyme active site with the help of docking studies were established. Our study identifies novel series of potent β-glucuronidase inhibitors for further investigation.  相似文献   

9.
This Letter reports the synthesis and biological evaluation of a collection of aminophthalazines as a novel class of compounds capable of reducing production of PGE2 in HCA-7 human adenocarcinoma cells. A total of 28 analogs were synthesized, assayed for PGE2 reduction, and selected active compounds were evaluated for inhibitory activity against COX-2 in a cell free assay. Compound 2xxiv (R1 = H, R2 = p-CH3O) exhibited the most potent activity in cells (EC50 = 0.02 μM) and minimal inhibition of COX-2 activity (3% at 5 μM). Furthermore, the anti-tumor activity of analog 2vii was analyzed in xenograft mouse models exhibiting good anti-cancer activity.  相似文献   

10.
A series of oleanolic acid analogs, characterized by structural modifications at position C-3 and C-28 of oleanane skeleton were synthesized and assessed for antiinflammatory potential towards lipopolysaccharide (LPS) induced nitric oxide (NO) production in macrophages. Results revealed that all the synthesized analogs of oleanolic acid inhibit NO production with an IC50 of 2.66–41.7 μM as compared to the specific nitric oxide synthase (NOS) inhibitor, L-NAME (IC50 = 69.21 and 73.18 μM on RAW 264.7 and J774A.1 cells, respectively) without affecting the cell viability when tested at their half maximal concentration. The most potent NO inhibitors (2, 8, 9 and 10) at a concentration of 20 μg/mL also demonstrated mild inhibition (27.9–51.9%) of LPS-induced tumor necrosis factor alpha (TNF-α) and weak inhibition (11.1–37.5%) towards interleukin 1-beta (IL-1β) production in both the cells. The present study paves a direction that analogs of oleanolic acid can be employed as a lead in the development of potent NO inhibitors. Molecular docking studies also showed that 10 (with top Goldscore docking pose 19.05) showed similar interaction as that of co-crystallized inhibitor and, thereby, helps to design the potent inhibitors of TNF-α.  相似文献   

11.
One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 2.36–9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC50 values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC50 values of 7.44–19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC50 values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC50 values and free binding energy values of the synthesized compounds docked into the active site of the enzymes.  相似文献   

12.
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50 = 7.7 μM) and 2 (IC50 = 10.6 μM) as represented by hybrid compound 27 (IC50 = 6.7 μM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 μM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the d-isomers 41 (IC50 = 19.3 μM) and 45 (IC50 = 5.4 μM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.  相似文献   

13.
In the present study, we carried out Mannich-type reaction to synthesize clioquinol-derived 7-methyl-arylsulfonylpiperazine analogs with improved growth-inhibitory effects. 11 bearing 5-nitro group on the quinoline ring exhibited 26-fold more potent than that of clioquinol against HeLa cells with a GI50 value of 0.71 μM. In addition, 11 revealed synergistic effects on the growth inhibition of HeLa cells with GI50 values of 0.65, 0.25, and 0.06 μM in the presence of 1, 10, and 50 μM copper, respectively. Consistent to the clioquinol-mediated apoptosis, mechanistic study indicates that 9- and 11-induced growth inhibition is attributed to caspase-dependent pathway. Detection of reactive oxygen species in response to clioquinol, 9 and 11 confirmed that ROS was dramatically stimulated in the presence of copper and partially abolished upon treatment of 1 mM tempol. Further study indicated that 9- and 11-mediated induction of oxidative stress by ROS generation resulted in the activation MAPK pathway.  相似文献   

14.
Various 2,3′-anhydro analogs of 5-substituted 1-(2-deoxy-β-d-lyxofuranosyl)uracils (1015) and a related 1-(3-O-mesyl-2-deoxy-β-d-lyxofuranosyl) pyrimidine nucleoside analog (18) have been synthesized for evaluation as a new class of potential anti-HBV agents. The compounds 10, 12, and 15 demonstrated most potent anti-HBV activities against duck HBV (DHBV) and human HBV with EC50 values in the range of 2.5–10 and 5–10 μg/mL, respectively, at non-toxic concentrations (CC50 = >200 μg/mL). The nucleoside 18 also demonstrated significant anti-HBV activity against DHBV with an EC50 value of 2.5 μg/mL, however, it was less active against HBV in 2.2.15 cells (EC50 = >10 μg/mL).  相似文献   

15.
Simple and efficient synthesis of quebecol and a number of its analogs was accomplished in five steps. The synthesized compounds were evaluated for antiproliferative activities against human cervix adenocarcinoma (HeLa), human ovarian carcinoma (SK-OV-3), human colon carcinoma (HT-29), and human breast adenocarcinoma (MCF-7) cancer cell lines. Among all the compounds, 7c, 7d, 7f, and 8f exhibited antiproliferative activities against four tested cell lines with inhibition over 80% at 75 μM after 72 h, whereas, compound 7b and 7g were more selective towards MCF-7 cell line. The IC50 values for compounds 7c, 7d, and 7f were 85.1 μM, 78.7 μM, and 80.6 μM against MCF-7 cell line, respectively, showing slightly higher antiproliferative activtiy than the synthesized and isolated quebecol with an IC50 value of 104.2 μM against MCF-7.  相似文献   

16.
3-Formylchromone (1), 3-methyl-7-hydroxychromone (2) and Schiff bases of 3-formylchromone 319 have been synthesized and their anti-thymidine phosphorylase inhibitory activity was evaluated. Compounds 119 showed a varying degree of thymidine phosphorylase inhibition with IC50 values 19.77 ± 3.25 to 480.21 ± 2.34 μM. Their activity was compared with the standard 7-deazaxanthine (IC50 = 39.28 ± 0.76 μM). Compound 12 showed an excellent thymidine phosphorylase inhibitory activity with an IC50 value of 19.77 ± 3.25 μM, better than the standard. Compound 4 also showed an excellent inhibitory activity (IC50 = 40.29 ± 4.56 μM). The parent 3-formylchromone (1) and 3-methyl-7-hydroxychromone (2) were found to be inactive. The structures of the compounds were elucidated by using spectroscopic techniques, including 1H NMR, EI MS, IR, UV and elemental analysis.  相似文献   

17.
Lowering of intra-ocular pressure is the primary pharmacologic approach for the treatment of glaucoma and a number of distinct mechanisms of action have been clinically validated. Targeting of multiple mechanisms in combination therapies has proven effective both clinically and commercially although potential improvements with regards to efficacy, tolerability and dosing frequency remain. Application of Theravance’s multivalent approach to drug discovery towards linked dual-pharmacology prostaglandin F receptor (FP) agonist/carbonic anhydrase (CA)-II inhibitor compounds is described. Compound 29 exhibits weak potency (pEC50 = 5.7, IA >1.0) as an FP agonist with high binding affinity (pKi = 8.1) to the CA-II enzyme, and has comparable corneal permeability to the CA-II inhibitor dorzolamide.  相似文献   

18.
The anti-Trypanosoma cruzi activity of 5-nitro-2-furfuriliden derivatives as well as the cytotoxicity of these compounds on J774 macrophages cell line and FN1 human fibroblast cells were investigated in this study. The most active compounds of series I and II were 4-butyl-[N′-(5-nitrofuran-2-yl) methylene] benzidrazide (3g; IC50 = 1.05 μM ± 0.07) and 3-acetyl-5-(4-butylphenyl)-2-(5-nitrofuran-2-yl)-2,3-dihydro,1,3,4-oxadiazole (4g; IC50 = 8.27 μM ± 0.42), respectively. Also, compound 3g was more active than the standard drugs, benznidazole (IC50 = 22.69 μM ± 1.96) and nifurtimox (IC50 = 3.78 μM ± 0.10). Regarding the cytotoxicity assay, the 3g compound presented IC50 value of 28.05 μM (SI = 26.71) against J774 cells. For the FN1 fibroblast assay, 3g showed IC50 value of 98 μM (SI = 93.33). On the other hand, compound 4g presented a cytotoxicity value on J774 cells higher than 400 μM (SI >48), and for the FN1 cells its IC50 value was 186 μM (SI = 22.49). Moreover, an exploratory data analysis, which comprises hierarchical cluster (HCA) and principal component analysis (PCA), was carried out and the findings were complementary. The molecular properties that most influenced the compounds’ grouping were C log P and total dipole moment, pointing out the need of a lipophilic/hydrophilic balance in the designing of novel potential anti-T. cruzi molecules.  相似文献   

19.
In this study, twenty-five (25) substituted aryl thiazoles (SAT) 125 were synthesized, and their in vitro cytotoxicity was evaluated against four cancer cell lines, MCF-7 (ER+ve breast), MDA-MB-231 (ER−ve breast), HCT116 (colorectal) and HeLa (cervical). The activity was compared with the standard anticancer drug doxorubicin (IC50 = 1.56 ± 0.05 μM). Among them, compounds 1, 48, and 19 were found to be toxic to all four cancer cell lines (IC50 values 5.37 ± 0.56–46.72 ± 1.80 μM). Compound 20 was selectively active against MCF7 breast cancer cells with IC50 of 40.21 ± 4.15 μM, whereas compound 19 was active against MCF7 and HeLa cells with IC50 of 46.72 ± 1.8, and 19.86 ± 0.11 μM, respectively. These results suggest that substituted aryl thiazoles 1 and 4 deserve to be further investigated in vivo as anticancer leads.  相似文献   

20.
A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50 = 1.18–8.01 μg/mL) and PTP1B (IC50 = 0.85–8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50 = 0.93 μg/mL) and oleanolic acid (IC50 = 0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号