首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

2.
A new insertion sequence element designated ISLdl1 has been isolated and characterized from Lactobacillus delbrueckii subsp. lactis ATCC 15808. It is the first IS element of L. delbrueckii subsp. lactis described. ISLdl1 is a 1508 bp element flanked by 26 bp imperfect inverted repeats, and generates an 8 bp AT-rich target duplication upon insertion. It contains one ORF encoding a protein of 455 amino acids. This protein shows significant homology to the transposases of the ISL3 family and to other bacterial transposases and putative transposases, and no homology to other proteins. Based on these structural features, ISLdl1 belongs to the ISL3 family. ISLdl1 is present in about 10-12 copies in the genome of ATCC 15808 based on Southern hybridization analysis. Location sites of eight ISLdl1 copies have been determined in more detail by cloning and sequencing one or both of the flanking regions of each ISLdl1 copy. ISLdl1 or ISLdl1-like IS elements were found exclusively in Lactobacillus delbrueckii species and in all strains of subsp. lactis tested. The nucleotide sequence of ISLdl1 is deposited under the accession number AJ302652.  相似文献   

3.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

4.
Twenty-four bacteriophages of Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris were classified. Two groups of bacteriophages morphologically defined as prolate or isometric types by electron microscopy were examined for their genome sizes, protein patterns and DNA homologies. These criteria showed that prolate phages are quite homogeneous. In contrast, isometric phages exhibit more differences, particularly in particle sizes and protein compositions. Analysis of DNA hybridizations confirmed that prolate phages can be grouped together as can be isometric phages but for one exception, phage I52. These two families were clearly defined. The unique phage which does not fit in either group probably belongs to a third one which is much less represented. No obvious relationships between these criteria and the lytic spectra were detected. Evidence of the presence of cohesive ends in phage genomes is also presented in this study. A more detailed analysis performed on one member of the prolate group revealed 3' protruding ends made up of around 13 nucleotides on complementary single strands.  相似文献   

5.
We report the complete genome sequence of Lactococcus lactis subsp. cremoris A76, a dairy strain isolated from a cheese production outfit. Genome analysis detected two contiguous islands fitting to the L. lactis subsp. lactis rather than to the L. lactis subsp. cremoris lineage. This indicates the existence of genetic exchange between the diverse subspecies, presumably related to the technological process.  相似文献   

6.
Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies in this study appear to be good starter candidates.  相似文献   

7.
8.
Lactococcus lactis subsp. cremoris is widely used in the manufacture of fermented milk products. Despite numerous attempts, efforts to isolate new strains by traditional plating and identification methods have not been successful. Previously, we described oligonucleotide probes for 16S rRNAs which could be used to discriminate L. lactis subsp. cremoris from related strains. These probes were used in colony hybridization experiments to screen large numbers of colonies obtained from enrichment cultures. A total of 170 strains of L. lactis were isolated from six milk samples, two colostrum samples, and one corn sample by using oligonucleotide probe 212RLa specific for the species L. lactis. Fifty-nine of these isolates also hybridized to L. lactis subsp. cremoris-specific probe 68RCa, and 26 of the strains which hybridized to the L. lactis subsp. cremoris-specific probe had the L. lactis subsp. cremoris phenotype.  相似文献   

9.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

10.
A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains.  相似文献   

11.
The sequence of the genome from the Lactococcus lactis subspecies lactis strain IL1403 shows the presence of two reading frames, gapA and gapB, putatively encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Previous proteomic analysis of the L. lactis subspecies cremoris strain MG1363 has revealed two neighbouring protein spots, GapBI and GapBII, with amino terminal sequences identical to the product of gapA from the L. lactis subspecies cremoris strain LM0230 and that of the two IL1403 sequences. In order to assign the two protein spots to their respective genes we constructed an L. lactis strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG1363 and the gapA overexpressing strain the GAPDH activity was specific for NAD. No NADP dependent activity was detected. Proteome analysis of the gapA overexpressing strain revealed two new protein spots, GapAI and GapAII, not previously detected in proteome analysis of MG1363. Results from mass spectrometry analysis of GapA and GapB and comparison with the deduced protein sequences for the GAPDH isozymes from the genome sequence of strain IL1403 allowed us to assign GapA and GapB to their apparent IL1403 homologues encoded by gapA and gapB, respectively. Furthermore, we suggest that a homologue of a gapB product, represented by GapB, is the main source of GAPDH activity in L. lactis during normal growth.  相似文献   

12.
【目的】比较16S rRNA和recA、groEL基因部分序列用于乳酸乳球菌乳酸亚种和乳脂亚种分类鉴定的效果。【方法】对已鉴定的8株分离自传统发酵乳的乳酸乳球菌, 选取recA和groEL基因片段, 通过PCR扩增、测序, 将测序得到的序列比对后构建系统发育树, 并与16S rRNA基因序列分析技术进行比较。【结果】比较分析不同菌株16S rRNA和recA、groEL基因的亲缘关系, recA、groEL基因可以准确地完成乳酸乳球菌乳酸亚种和乳脂亚种的区分和鉴定。【结论】recA和groEL基因序列分析可以实现乳酸乳球菌乳酸亚种和乳脂亚种的区分, 因其具有快速、准确、稳定的特点, 可适合于乳酸乳球菌乳酸亚种和乳脂亚种间的快速分类鉴定。  相似文献   

13.
A high-resolution amplified fragment length polymorphism (AFLP) methodology was developed to achieve the delineation of closely related Lactococcus lactis strains. The differentiation depth of 24 enzyme-primer-nucleotide combinations was experimentally evaluated to maximize the number of polymorphisms. The resolution depth was confirmed by performing diversity analysis on 82 L. lactis strains, including both closely and distantly related strains with dairy and nondairy origins. Strains clustered into two main genomic lineages of L. lactis subsp. lactis and L. lactis subsp. cremoris type-strain-like genotypes and a third novel genomic lineage rooted from the L. lactis subsp. lactis genomic lineage. Cluster differentiation was highly correlated with small-subunit rRNA homology and multilocus sequence analysis (MLSA) studies. Additionally, the selected enzyme-primer combination generated L. lactis subsp. cremoris phenotype-specific fragments irrespective of the genotype. These phenotype-specific markers allowed the differentiation of L. lactis subsp. lactis phenotype from L. lactis subsp. cremoris phenotype strains within the same L. lactis subsp. cremoris type-strain-like genomic lineage, illustrating the potential of AFLP for the generation of phenotype-linked genetic markers.  相似文献   

14.
Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81 pseudogenes and encodes 2,436 proteins. Of the 530 unique proteins, 47 belong to the COG (clusters of orthologous groups) functional category "carbohydrate metabolism and transport," by far the largest category of novel proteins in comparison with L. lactis subsp. lactis IL1403. Nearly one-fifth of the 71 insertion elements are concentrated in a specific 56-kb region. This integration hot-spot region carries genes that are typically associated with lactococcal plasmids and a repeat sequence specifically found on plasmids and in the "lateral gene transfer hot spot" in the genome of Streptococcus thermophilus. Although the parent of L. lactis MG1363 was used to demonstrate lysogeny in Lactococcus, L. lactis MG1363 carries four remnant/satellite phages and two apparently complete prophages. The availability of the L. lactis MG1363 genome sequence will reinforce its status as the prototype among lactic acid bacteria through facilitation of further applied and fundamental research.  相似文献   

15.
The genome sequence of Lactococcus lactis revealed that the ycdB gene was recently exchanged between lactococci and enterobacteria. The present study of ycdB orthologs suggests that L. lactis was probably the gene donor and reveals three instances of gene transfer to enterobacteria. Analysis of ycdB gene transfer between two L. lactis subspecies, L. lactis subsp. lactis and L. lactis subsp. cremoris, indicates that the gene can be mobilized, possibly by conjugation.  相似文献   

16.
Advances in comparative genomics have provided significant opportunities for analysis of genetic diversity in species with limited genomic resources, such as the genus Lens. Medicago truncatula expressed sequence tags (ESTs) were aligned with the Arabidopsis thaliana genome sequence to identify conserved exon sequences and splice sites in the ESTs. Conserved primers (CPs) based on M. truncatula EST sequences flanking one or more introns were then designed. A total of 22% of the CPs produced polymerase chain reaction amplicons in lentil and were used to sequence amplicons in 175 wild and 133 domesticated lentil accessions. Analysis of the sequences confirmed that L. nigricans and L. ervoides are well-defined species at the DNA sequence level. Lens culinaris subsp. odemensis, L. culinaris subsp. tomentosus, and L. lamottei may constitute a single taxon pending verification with crossability experiments. Lens culinaris subsp. orientalis is the progenitor of domesticated lentil, L. culinaris subsp. culinaris (as proposed before), but a more specific area of origin can be suggested in southern Turkey. We were also able to detect the divergence, following domestication, of the domesticated gene pool into overlapping large-seeded (megasperma) and small-seeded (microsperma) groups. Lentil domestication led to a loss of genetic diversity of approximately 40%. The approach followed in this research has allowed us to rapidly exploit sequence information from model plant species for the study of genetic diversity of a crop such as lentil with limited genomic resources.  相似文献   

17.
Lactate dehydrogenase (ldh) gene sequences, levels of 16S rRNA group-specific probe binding, and phenotypic characteristics were compared for 45 environmental isolates and four commercial starter strains of Lactococcus lactis to identify evolutionary groups best suited to cheddar cheese manufacture, ldh sequences from the environmental isolates showed high similarity to those from two groups of L. lactis used for industrial fermentations, L. lactis subsp. cremoris and subsp. lactis. Within each phylogenetically defined subspecies, ldh sequence similarities were greater than 99.1%. Strains with phenotypic traits formerly diagnostic for both subspecies were found in each ldh similarity group, but only strains belonging to L. lactis subsp. cremoris by both the newer, genetic and the older, superseded phenotypic criteria were judged potentially suitable for the commercial production of cheddar cheese. Identical evolutionary relationships were inferred from ldh sequences and from binding of subspecies-specific, 16S rRNA-directed oligonucleotide probes. However, groups defined according to these chromosomal traits bore no relationship to patterns of arginine deamination, carbon substrate utilization, or bacteriophage sensitivity, which may be encoded by cryptic genes or sexually transmissible genetic elements. Fourteen new L. lactis subsp. cremoris isolates were identified as suitable candidates for cheddar cheese manufacture, and 10 of these were completely resistant to three different batteries of commercial bacteriophages known to reduce starter activity.  相似文献   

18.
Aims:  We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture.
Methods and Results:  In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l -arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate.
Conclusions:  Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described.
Significance and Impact of the Study:  The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.  相似文献   

19.
New tools for the physical and genetic mapping of Lactococcus strains.   总被引:7,自引:0,他引:7  
Tools for the genetic and physical analysis of the Lactococcus lactis subsp. lactis genome were developed. Plasmid pRC1 does not replicate in Gram+ bacteria; it contains unique ApaI, NotI and SmaI restriction sites and an erythromycin-resistance (ErR) encoding gene, ermAM, functional in L. lactis subsp. lactis. When a chromosomal L. lactis subsp. lactis DNA fragment was cloned into this vector, the resulting plasmid became integrated, after transformation, into the bacterial chromosome by homologous recombination in a Campbell-like manner. The integration lead to the generation of new rare restriction sites near to the host fragment. This procedure allows precise mapping of cloned genes onto the chromosomal restriction map. The mapping of the his operon of L. lactis subsp. lactis provides an illustration. The cloning into pRC1 of an IS element able to transpose into the chromosome of the target cell, gave rise to an integration plasmid able to insert randomly rare restriction sites onto the bacterial chromosome. The L. lactis IS element, ISS1RS, was cloned into pRC1, yielding pRL1. Pulsed-field gel electrophoresis analysis of ErR clones obtained after transformation with pRL1, showed that this plasmid was stably integrated at a number of different sites in the L. lactis subsp. lactis chromosome, via transposition. Plasmids pRC1 and pRL1 can greatly facilitate the construction of the physical and genetic map of the chromosome of lactococcal strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号