首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
In vitro morphogenesis of foot-and-mouth disease virus.   总被引:5,自引:5,他引:0       下载免费PDF全文
Foot-and-mouth disease virion RNA is translated efficiently and completely in a rabbit reticulocyte lysate cell-free system. Treatment of cell-free lysates with monospecific serum prepared against the individual viral structural proteins or with monoclonal antibodies prepared against the inactivated virus or against a viral structural protein precipitated all of the structural proteins, suggesting that structural protein complexes were formed in vitro. Sucrose gradient analysis of the cell-free lysate indicated that complexes sedimenting at 5, 14, 60 to 70, and ca. 110S were assembled in vitro. Structural proteins VP0, VP1, and VP3 were the major polypeptides found in these complexes. The material sedimenting at 110S, i.e., containing VP0, VP1, and VP3, was precipitated by a 140S-specific monoclonal antibody but not by a 12S subunit-specific monoclonal antibody, suggesting that this capsid structure contained at least one epitope present on the intact virus.  相似文献   

2.
Plasmids containing the foot-and-mouth disease virus structural protein precursor (P1) and 3C protease genes or the P1 gene alone were expressed in Escherichia coli. A recombinant baculovirus containing the P1 gene was also generated and expressed in Spodoptera frugiperda cells. Expression of the P1 and 3C genes in E. coli resulted in efficient synthesis and processing of the structural protein precursor and assembly into 70S empty capsids. This material reacted with neutralizing monoclonal antibodies which recognize only conformational epitopes and elicited a significant neutralizing antibody response in vaccinated guinea pigs. Expression of the P1 gene in E. coli resulted in synthesis of an insoluble product, whereas in insect cells infected with the recombinant baculovirus a soluble product was synthesized. Both soluble and insoluble P1 reacted with a 12S-specific monoclonal antibody, but only soluble P1 elicited a neutralizing antibody response in guinea pigs.  相似文献   

3.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

4.
We analyzed a region of the capsid of canine parvovirus (CPV) which determines the ability of the virus to infect canine cells. This region is distinct from those previously shown to determine the canine host range differences between CPV and feline panleukopenia virus. It lies on a ridge of the threefold spike of the capsid and is comprised of five interacting loops from three capsid protein monomers. We analyzed 12 mutants of CPV which contained amino acid changes in two adjacent loops exposed on the surface of this region. Nine mutants infected and grew in feline cells but were restricted in replication in one or the other of two canine cell lines tested. Three other mutants whose genomes contain mutations which affect one probable interchain bond were nonviable and could not be propagated in either canine or feline cells, although the VP1 and VP2 proteins from those mutants produced empty capsids when expressed from a plasmid vector. Although wild-type and mutant capsids bound to canine and feline cells in similar amounts, infection or viral DNA replication was greatly reduced after inoculation of canine cells with most of the mutants. The viral genomes of two host range-restricted mutants and two nonviable mutants replicated to wild-type levels in both feline and canine cells upon transfection with plasmid clones. The capsids of wild-type CPV and two mutants were similar in susceptibility to heat inactivation, but one of those mutants and one other were more stable against urea denaturation. Most mutations in this structural region altered the ability of monoclonal antibodies to recognize epitopes within a major neutralizing antigenic site, and that site could be subdivided into a number of distinct epitopes. These results argue that a specific structure of this region is required for CPV to retain its canine host range.  相似文献   

5.
In this paper we describe the use of specific proteinases, surface-specific radioiodination, and antigenic reactivity in conjunction with isoelectric focusing for probing the conformations of different polioviral empty capsid species. Naturally occurring empty capsids (called procapsids) with an isoelectric point of 6.8 were resistant to proteolytic digestion by trypsin or chymotrypsin, as were empty capsids assembled in vitro in the presence of a cytoplasmic extract prepared from poliovirus-infected HeLa cells. In contrast, self-assembled empty capsids (isoelectric point, 5.0) were sensitive to both proteinases. Capsid proteins VP0 and VP1 were attacked predominantly, whereas VP3 was resistant to cleavage. Unpolymerized 14S particles possessed a trypsin sensitivity which was qualitatively similar to that of self-assembled empty shells. Surface-specific iodination of virions and procapsids labeled VP1 exclusively. In contrast, radioiodination of self-assembled empty capsids labeled predominantly VP0. After radioiodination the sedimentation coefficient corrected to water at 20 degrees C, the isoelectric point, and the trypsin resistance of the procapsids remained unchanged. Procapsids and extract-assembled empty capsids were N antigenic, whereas self-assembled empty capsids were H antigenic. Self-assembled empty capsids were not converted to pH 6.8 trypsin-resistant structures by incubation with a virus-infected cytoplasmic extract. However, 14S particles assembled in the presence of a mock-infected extract formed empty capsids, 20% of which resembled extract-assembled empty shells as determined by the above-described criteria. These and related findings are discussed in terms of empty capsid structure and morphogenesis.  相似文献   

6.
Cytoplasmic dynein is the major molecular motor involved in minus-end-directed cellular transport along microtubules. There is increasing evidence that the retrograde transport of herpes simplex virus type 1 along sensory axons is mediated by cytoplasmic dynein, but the viral and cellular proteins involved are not known. Here we report that the herpes simplex virus outer capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and is sufficient to mediate retrograde transport of viral capsids in a cellular model. A library of herpes simplex virus capsid and tegument structural genes was constructed and tested for interactions with dynein subunits in a yeast two-hybrid system. A strong interaction was detected between VP26 and the homologous 14-kDa dynein light chains RP3 and Tctex1. In vitro pull-down assays confirmed binding of VP26 to RP3, Tctex1, and intact cytoplasmic dynein complexes. Recombinant herpes simplex virus capsids were constructed either with or without VP26. In pull-down assays VP26+ capsids bound to RP3; VP26-capsids did not. To investigate intracellular transport, the recombinant viral capsids were microinjected into living cells and incubated at 37 degrees C. After 1 h VP26+ capsids were observed to co-localize with RP3, Tctex1, and microtubules. After 2 or 4 h VP26+ capsids had moved closer to the cell nucleus, whereas VP26-capsids remained in a random distribution. We propose that VP26 mediates binding of incoming herpes simplex virus capsids to cytoplasmic dynein during cellular infection, through interactions with dynein light chains.  相似文献   

7.
Five neutralizing monoclonal antibodies (nMAbs) obtained against type A5 Spain-86 foot-and-mouth disease virus were used to generate a series of neutralization-resistant variants. In vitro and in vivo assays showed that the variants were fully refractory to neutralization by the selecting nMAb. On the basis of cross-neutralization and binding assays, two neutralizing antigenic sites have been located on the virus surface; one, located near the C-terminus of VP1, displayed a linear epitope, and the second, located on VP2, displayed two conformational epitopes. Nucleotide sequencing of RNA of the parental and variant capsid protein-coding region P1 has placed the amino acid changes at position 198 of VP1 for the first site and at positions 72 and 79 of VP2 for the related epitopes in the second site. The relative importance of these two sites in the biological properties of foot-and-mouth disease virus is discussed.  相似文献   

8.
Two types of empty capsid particles that differed with respect to the presence of the two outer shell proteins were isolated from MA-104 cells infected with bovine rotavirus V1005. Three previously uncharacterized polypeptides, I, II, and III, migrating between VP2 and VP6, were detected in empty capsids but not in single- and double-shelled rotavirus particles. Peptide mapping revealed that all three proteins were related to VP2. Polypeptides I, II, and III could be generated by in vitro trypsin digestion of empty capsids not exposed to trypsin in the infection medium. Labeled polypeptides appeared in empty capsids before they were detected in intracellular single- or double-shelled rotavirus particles. Empty capsids were also observed in MA-104 cells infected with bovine rotaviruses UK and NCDV, simian rotavirus SA11, and human rotavirus KU. VP7-containing empty capsid is the minimal subunit vaccine for cows; we failed to induce a substantial neutralizing antibody increase with VP7 purified under denaturating or nondenaturating conditions or with synthetic peptides corresponding to two regions of VP7.  相似文献   

9.
Astroviruses are important agents of pediatric gastroenteritis. To better understand astrovirus antigenic structure and the basis of protective immunity, monoclonal antibodies (MAbs) were produced against serotype 1 human astrovirus. Four MAbs were generated. One MAb (8G4) was nonneutralizing but reacted to all seven serotypes of astrovirus by enzyme-linked immunosorbentassay (ELISA) and immunoperoxidase staining of infected cells. Three MAbs were found to have potent neutralizing activity against astrovirus. The first (5B7) was serotype 1 specific, another (7C2) neutralized all seven human astrovirus serotypes, while the third (3B2) neutralized serotypes 1 and 7. Immunoprecipitation of radiolabeled astrovirus proteins from supernatants of astrovirus-infected cells showed that all three neutralizing antibodies reacted with VP29. MAb 5B7 also reacted strongly with VP26. A competition ELISA showed that all three neutralizing antibodies competed with each other for binding to purified astrovirus virions, suggesting that their epitopes were topographically in close proximity. None of the neutralizing MAbs competed with nonneutralizing MAb 8G4. The neutralizing MAbs were used to select antigenic variant astroviruses, which were then studied in neutralization assays. These assays also suggested a close relationship between the respective epitopes. All three neutralizing MAbs were able to prevent attachment of radiolabeled astrovirus particles to human Caco 2 intestinal cell monolayers. Taken together, these data suggest that the astrovirus capsid protein VP29 may be important in viral neutralization, heterotypic immunity, and virus attachment to target cells.  相似文献   

10.
A foot-and-mouth disease virus (FMDV) cDNA cassette containing sequences encoding the capsid precursor P1, peptide 2A and a truncated 2B (abbreviated P1-2A) of type C FMDV, has been modified to generate the authentic amino terminus and the myristoylation signal. This construct has been used to produce a recombinant baculovirus (AcMM53) which, upon infection of Spodoptera frugiperda insect cells, expressed a recombinant P1-2A precursor with a high yield. This polyprotein reacted with neutralizing monoclonal antibodies (MAbs) that bind to continuous epitopes of the major antigenic site A (also termed site 1) of capsid protein VP1. Unexpectedly, it also reacted with neutralizing MAbs which define complex, discontinuous epitopes previously identified on FMDV particles. The reactivity of MAbs with P1-2A was quantitatively similar to their reactivity with intact virus and, in both cases, the reactivity with MAbs that recognized discontinuous epitopes was lost upon heat denaturation of the antigen. The finding that a capsid precursor may fold in such a way as to maintain discontinuous epitopes involved in virus neutralization present on the virion surface opens the possibility of using unprocessed capsid precursors as novel antiviral immunogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号