首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serine protease inhibitor (serpin), plasminogen activator inhibitor‐1 (PAI‐1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI‐1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI‐1, in which the solvent‐exposed reactive center loop (RCL) inserts into its central β‐sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13‐P5′) to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap‐like RCL‐insertion that occurs with a half‐life of 1–2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half‐life of ~5 and 25 min at the P5′ and P8 RCL positions, respectively. We hypothesize that the process detected at P5′ represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.  相似文献   

2.
Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI‐1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR. Moreover, we show that PAI‐1 counteracts the negative feedback and behaves as a proteolysis‐triggered stabilizer of uPAR‐mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N‐terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process.  相似文献   

3.
Fibrinolysis is a process responsible for the dissolution of formed thrombi to re‐establish blood flow after thrombus formation. Plasminogen activator inhibitor‐1 (PAI‐1) inhibits urokinase‐type and tissue‐type plasminogen activator (uPA and tPA) and is the major negative regulator of fibrinolysis. Inhibition of PAI‐1 activity prevents thrombosis and accelerates fibrinolysis. However, a specific antagonist of PAI‐1 is currently unavailable for therapeutic use. We screened a panel of uPA variants with mutations at and near the active site to maximize their binding to PAI‐1 and identified a potent PAI‐1 antagonist, PAItrap. PAItrap is the serine protease domain of urokinase containing active‐site mutation (S195A) and four additional mutations (G37bR–R217L–C122A–N145Q). PAItrap inhibits human recombinant PAI‐1 with high potency (Kd = 0.15 nM) and high specificity. In vitro using human plasma, PAItrap showed significant thrombolytic activity by inhibiting endogenous PAI‐1. In addition, PAItrap inhibits both human and murine PAI‐1, allowing the evaluation in murine models. In vivo, using a laser‐induced thrombosis mouse model in which thrombus formation and fibrinolysis are monitored by intravital microscopy, PAItrap reduced fibrin generation and inhibited platelet accumulation following vascular injury. Therefore, this work demonstrates the feasibility to generate PAI‐1 inhibitors using inactivated urokinase.  相似文献   

4.
The serine protease inhibitor, plasminogen activator inhibitor Type‐1 (PAI‐1) is a metastable protein that undergoes an unusual transition to an inactive conformation with a short half‐life of only 1–2 hr. Circulating PAI‐1 is bound to a cofactor vitronectin, which stabilizes PAI‐1 by slowing this latency conversion. A well‐characterized PAI‐1‐binding site on vitronectin is located within the somatomedin B (SMB) domain, corresponding to the first 44 residues of the protein. Another PAI‐1 recognition site has been identified with an engineered form of vitronectin lacking the SMB domain, yet retaining PAI‐1 binding capacity (Schar, Blouse, Minor, Peterson. J Biol Chem. 2008;283:28487–28496). This additional binding site is hypothesized to lie within an intrinsically disordered domain (IDD) of vitronectin. To localize the putative binding site, we constructed a truncated form of vitronectin containing 71 amino acids from the N‐terminus, including the SMB domain and an additional 24 amino acids from the IDD region. This portion of the IDD is rich in acidic amino acids, which are hypothesized to be complementary to several basic residues identified within an extensive vitronectin‐binding site mapped on PAI‐1 (Schar, Jensen, Christensen, Blouse, Andreasen, Peterson. J Biol Chem. 2008;283:10297–10309). Steady‐state and stopped‐flow fluorescence measurements demonstrate that the truncated form of vitronectin exhibits the same rapid biphasic association as full‐length vitronectin and that the IDD hosts the elusive second PAI‐1 binding site that lies external to the SMB domain of vitronectin.  相似文献   

5.
Plasminogen activator inhibitor-1 (PAI-1) is a serpin protease inhibitor that binds plasminogen activators (uPA and tPA) at a reactive center loop located at the carboxyl-terminal amino acid residues 320-351. The loop is stretched across the top of the active PAI-1 protein maintaining the molecule in a rigid conformation. In the latent PAI-1 conformation, the reactive center loop is inserted into one of the beta sheets, thus making the reactive center loop unavailable for interaction with the plasminogen activators. We truncated porcine PAI-1 at the amino and carboxyl termini to eliminate the reactive center loop, part of a heparin binding site, and a vitronectin binding site. The region we maintained corresponds to amino acids 80-265 of mature human PAI-1 containing binding sites for vitronectin, heparin (partial), uPA, tPA, fibrin, thrombin, and the helix F region. The interaction of "inactive" PAI-1, rPAI-1(23), with plasminogen and uPA induces the formation of a proteolytic protein with angiostatin properties. Increasing amounts of rPAI-1(23) inhibit the proteolytic angiostatin fragment. Endothelial cells exposed to exogenous rPAI-1(23) exhibit reduced proliferation, reduced tube formation, and 47% apoptotic cells within 48 h. Transfected endothelial cells secreting rPAI-1(23) have a 30% reduction in proliferation, vastly reduced tube formation, and a 50% reduction in cell migration in the presence of VEGF. These two studies show that rPAI-1(23) interactions with uPA and plasminogen can inhibit plasmin by two mechanisms. In one mechanism, rPAI-1(23) cleaves plasmin to form a proteolytic angiostatin-like protein. In a second mechanism, rPAI-1(23) can bind uPA and/or plasminogen to reduce the number of uPA and plasminogen interactions, hence reducing the amount of plasmin that is produced.  相似文献   

6.
Skin extracellular matrix (ECM) molecules regulate a variety of cellular activities, including cell movement, which are central to wound healing and metastasis. Regulated cell movement is modulated by proteases and their associated molecules, including the serine proteases urinary-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) and their inhibitors (PAIs). As a result of wounding and loss of basement membrane structure, epidermal keratinocytes can become exposed to collagen. To test the hypothesis that during wounding, exposed collagen, the most abundant ECM molecule in the skin, regulates keratinocyte PA and PAI gene expression, we utilized an in vitro model in which activated keratinocytes were cultured in dishes coated with collagen or other ECM substrates. tPA, uPA, and PAI-1 mRNA and enzymatic activity were detected when activated keratinocytes attached to fibronectin, vitronectin, collagen IV, and RGD peptide. In contrast, adhesion to collagen I and collagen III completely suppressed expression of PAI-1 mRNA and protein and further increased tPA expression and activity. Similarly, keratinocyte adhesion to laminin-1 suppressed PAI-1 mRNA and protein expression and increased tPA activity. The suppressive effect of collagen I on PAI-1 gene induction was dependent on the maintenance of its native fibrillar structure. Thus, it would appear that collagen- and laminin-regulated gene expression of molecules associated with plasminogen activation provides an additional dimension in the regulation of cell movement and matrix remodeling in skin wound healing.  相似文献   

7.
Three chimeric mutants of plasminogen activator inhibitor 1 (PAI-1) have been constructed where the strained loop of wild type PAI-1 (wtPAI-1) has been replaced with a 19-amino acid region from either plasminogen activator inhibitor 2 (PAI-2), antithrombin III, or with an artificial serine protease inhibitor superfamily consensus strained loop. The inhibitors were expressed in Escherichia coli, and the purified proteins had specific activities toward urokinase-type plasminogen activator (uPA) or the single- and two-chain forms of tissue type plasminogen activator (tPA) that were similar to wtPAI-1. Experiments suggest that the strained loop of PAI-1 is not responsible for the transition between the latent and the active conformations or for binding to vitronectin. Second-order rate constants for the interactions with uPA and single- or two-chain tPA were similar to those of wtPAI-1. Values range from a low of 1.8 x 10(5) M-1 s-1 for the interaction of the PAI-2 chimera with single-chain tPA to a high value of 1.6 x 10(7) M-1 s-1 for the consensus mutant with two-chain tPA. This former value is 200 times higher than the reported rate constant for the interaction between PAI-2 and single-chain tPA, suggesting that structures outside of the strained loop are responsible for the major differences in specificity between PAI-1 and PAI-2.  相似文献   

8.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein family, which has a common tertiary structure consisting of three beta-sheets and several alpha-helices. Despite the similarity of its structure with those of other serpins, PAI-1 is unique in its conformational lability, which allows the conversion of the metastable active form to a more stable latent conformation under physiological conditions. For the conformational conversion to occur, the reactive center loop (RCL) of PAI-1 must be mobilized and inserted into the major beta-sheet, A sheet. In an effort to understand how the structural conversion is regulated in this conformationally labile serpin, we modulated the length of the RCL of PAI-1. We show that releasing the constraint on the RCL by extension of the loop facilitates a conformational transition of PAI-1 to a stable state. Biochemical data strongly suggest that the stabilization of the transformed conformation is owing to the insertion of the RCL into A beta-sheet, as in the known latent form. In contrast, reducing the loop length drastically retards the conformational change. The results clearly show that the constraint on the RCL is a factor that regulates the conformational transition of PAI-1.  相似文献   

9.
Maspin is a member of the serpin family with a reactive center loop that is incompatible with proteinase inhibition by the serpin conformational change mechanism. Despite this there are reports that maspin might regulate uPA-dependent processes in vivo. Using exogenous and endogenous fluorescence, we demonstrate here that maspin can bind uPA and tPA in both single-chain and double-chain forms, with K(d) values between 300 and 600 nM. Binding is at an exosite on maspin close to, but outside of, the reactive center loop and is therefore insensitive to mutation of Arg(340) within the reactive center loop. The binding site on tPA does not involve the proteinase active site, with the result that maspin can bind to S195A tPA that is already complexed to plasminogen activator inhibitor-1. The ability of maspin to bind these proteinases without involvement of the reactive center loop leaves the latter free to engage in additional, as yet unidentified, maspin-protein interactions that may serve to regulate the properties of the exosite-bound proteinase. This may help to reconcile apparently conflicting studies that demonstrate the importance of the reactive center loop in certain maspin functions, despite the inability of maspin to directly inhibit tPA or uPA catalytic activity in in vitro assays through engagement between its reactive center loop and the active site of the proteinase.  相似文献   

10.
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.  相似文献   

11.
人子宫内膜中存在组织型(tPA)及尿激酶型(uPA)两类纤蛋白溶酶元激活因子,其含量在增殖期高于分泌期。本文应用免疫组织化学定位证实uPA及tPA两类抗原存在于子宫内膜的腺体细胞和间质细胞中。应用SDS-PAGE分高蛋白质,继而应用纤蛋白-琼脂糖铺盖技术测得离体培养下间质细胞仅释放tPA,腺体细胞仅释放uPA,但两种细胞均分泌PA的抑制因子(PAI)。培液中加入孕酮,明显抑制PA和刺激PAI生成。雌二醇作用与孕酮相反。某些肽类激素hCG、PRL、GnRH及cAMP作用基本与雌二醇相同。但福司克林(FK)则刺激间质、腺体两种细胞产生tPA及少量uPA,抑制PAI生成。本工作表明人子宫内膜中存在PA及PAI作用相反的酶,受激素调控,其生理意义尚待进一步探讨。  相似文献   

12.
The binding of plasminogen activator inhibitor-1 (PAI-1) to serine proteinases, such as tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), is mediated by the exosite interactions between the surface-exposed variable region-1, or 37-loop, of the proteinase and the distal reactive center loop (RCL) of PAI-1. Although the contribution of such interactions to the inhibitory activity of PAI-1 has been established, the specific mechanistic steps affected by interactions at the distal RCL remain unknown. We have used protein engineering, stopped-flow fluorimetry, and rapid acid quenching techniques to elucidate the role of exosite interactions in the neutralization of tPA, uPA, and beta-trypsin by PAI-1. Alanine substitutions at the distal P4' (Glu-350) and P5' (Glu-351) residues of PAI-1 reduced the rates of Michaelis complex formation (k(a)) and overall inhibition (k(app)) with tPA by 13.4- and 4.7-fold, respectively, whereas the rate of loop insertion or final acyl-enzyme formation (k(lim)) increased by 3.3-fold. The effects of double mutations on k(a), k(lim), and k(app) were small with uPA and nonexistent with beta-trypsin. We provide the first kinetic evidence that the removal of exosite interactions significantly alters the formation of the noncovalent Michaelis complex, facilitating the release of the primed side of the distal loop from the active-site pocket of tPA and the subsequent insertion of the cleaved reactive center loop into beta-sheet A. Moreover, mutational analysis indicates that the P5' residue contributes more to the mechanism of tPA inhibition, notably by promoting the formation of a final Michaelis complex.  相似文献   

13.
Some endocytosis receptors related to the low-density lipoprotein receptor, including low-density lipoprotein receptor-related protein-1A, very-low-density lipoprotein receptor, and sorting protein-related receptor, bind protease-inhibitor complexes, including urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), and the uPA-PAI-1 complex. The unique capacity of these receptors for high-affinity binding of many structurally unrelated ligands renders mapping of receptor-binding surfaces of serpin and serine protease ligands a special challenge. We have mapped the receptor-binding area of the uPA-PAI-1 complex by site-directed mutagenesis. Substitution of a cluster of basic residues near the 37-loop and 60-loop of uPA reduced the receptor-binding affinity of the uPA-PAI-1 complex approximately twofold. Deletion of the N-terminal growth factor domain of uPA reduced the affinity 2-4-fold, depending on the receptor, and deletion of both the growth factor domain and the kringle reduced the affinity sevenfold. The binding affinity of the uPA-PAI-1 complex to the receptors was greatly reduced by substitution of basic and hydrophobic residues in alpha-helix D and alpha-helix E of PAI-1. The localization of the implicated residues in the 3D structures of uPA and PAI-1 shows that they form a continuous receptor-binding area spanning the serpin as well as the A-chain and the serine protease domain of uPA. Our results suggest that the 10-100-fold higher affinity of the uPA-PAI-1 complex compared with the free components depends on the bonus effect of bringing the binding areas on uPA and PAI-1 together on the same binding entity.  相似文献   

14.
猕猴精浆纤溶酶原激活因子的来源及在精子获能中的作用   总被引:13,自引:0,他引:13  
Zheng P  Zou RJ  Liu YX 《生理学报》2001,53(1):45-50
我们的前期工作表明,不育症人精液中纤溶酶原激活因子(plasminogen activator;PA)活性明显升高;给成年办和猕猴注射长效睾酮诱发无精过程中,精液PA含量也伴随上升,为进一步查明PA的来源和对精子的作用,原位杂交检测组织型PA(tPA),尿激酶型PA(uPA)及PA抑制因子-1(PAI-1)泊mRNAs在成年健康猕附睾、前列腺和精囊中的表达。体外培养猕猴精子,培液中加入uPA、tPA及其底物纤溶酶原(plasminogen),测试PA对精子活力、顶体反应及激活卵子的影响。结果表明,猕猴附睾、前列腺和精囊均表达tPA、uPA和PAI-1 mRNAs。加入uPA能维持精子的活力,使精子产生超激活运动,诱导顶体反应的发生,并使精子获得激活卵子的能力,这说明猕猴精浆PA除来源于睾丸外,可能主要来源于附睾及附性腺;在体外,uPA,而不是tPA,可能诱导精子获能。  相似文献   

15.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

16.
Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor of plasminogen activators (uPA and tPA) and thus plays a central role in fibrinolysis. The spontaneous insertion of its reactive centre loop (RCL) into β-sheet A is responsible for its irreversible conversion into the inactive latent form. In this study, we used two peptides mimicking residues P14-P9 and P8-P3 of the RCL so as to understand this dynamic process. We show that both peptides inhibit the formation of PAI-1/uPA and PAI-1/tPA complexes via two different mechanisms. Targeting the N-terminal part of the loop induces the cleavage of PAI-1 by the proteases uPA/tPA while targeting its C-terminal part greatly favors the irreversible formation of latent PAI-1.  相似文献   

17.
Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13–800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.  相似文献   

18.
Human neuroserpin (hNS) is a protein serine protease inhibitor expressed mainly in the nervous system, where it plays key roles in neural development and plasticity by primarily targeting tissue plasminogen activator (tPA). Four hNS mutations are associated to a form of autosomal dominant dementia, known as familial encephalopathy with neuroserpin inclusion bodies. The medical interest in and the lack of structural information on hNS prompted us to study the crystal structure of native and cleaved hNS, reported here at 3.15 and 1.85 Å resolution, respectively. In the light of the three-dimensional structures, we focus on the hNS reactive centre loop in its intact and cleaved conformations relative to the current serpin polymerization models and discuss the protein sites hosting neurodegenerative mutations. On the basis of homologous serpin structures, we suggest the location of a protein surface site that may stabilize the hNS native (metastable) form. In parallel, we present the results of kinetic studies on hNS inhibition of tPA. Our data analysis stresses the instability of the hNS-tPA complex with a dissociation half-life of minutes compared to a half-life of weeks observed for other serpin-cognate protease complexes.  相似文献   

19.
The extracellular serine protease tissue plasminogen activator (tPA) that converts plasminogen into plasmin is abundantly expressed throughout the central nervous system. We have recently demonstrated that the tPA-plasmin system participates in the rewarding and locomotor-stimulating effects of morphine by acutely regulating morphine-induced dopamine release in the nucleus accumbens (NAc). In the present study, we examined the effects of microinjections of plasminogen activator inhibitor-1 (PAI-1), tPA or plasmin into the NAc on morphine-induced dopamine release, hyperlocomotion and anti-nociceptive effects in ICR mice. A single morphine treatment resulted in an increase in protein levels of PAI-1 in the NAc. Microinjection of PAI-1 into the NAc dose-dependently reduced morphine-induced dopamine release and hyperlocomotion. In contrast, microinjection of tPA into the NAc significantly potentiated morphine-induced dopamine release and hyperlocomotion without affecting basal levels. Furthermore, microinjection of plasmin enhanced morphine-induced dopamine release, but did not modify the hyperlocomotion induced by morphine. The intracerebroventricular injection of PAI-1, tPA and plasmin at high doses had no effect on the anti-nociceptive effects of morphine. These results suggest that the tPA-plasmin system is involved in the regulation of morphine-induced dopamine release and dopamine-dependent behaviors but not the anti-nociceptive effects of morphine.  相似文献   

20.
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of the serine proteases tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). To systematically investigate the roles of the reactive center P1 and P1' residues in PAI-1 function, saturation mutagenesis was utilized to construct a library of PAI-1 variants. Examination of 177 unique recombinant proteins indicated that a basic residue was required at P1 for significant inhibitory activity toward uPA, whereas all substitutions except proline were tolerated at P1'. P1Lys variants exhibited lower inhibition rate constants and greater sensitivity to P1' substitutions than P1Arg variants. Alterations at either P1 or P1' generally had a larger effect on the inhibition of tPA. A number of variants that were relatively specific for either uPA or tPA were identified. P1Lys-P1'Ala reacted 40-fold more rapidly with uPA than tPA, whereas P1Lys-P1'Trp showed a 6.5-fold preference for tPA. P1-P1' variants containing additional mutations near the reactive center demonstrated only minor changes in activity, suggesting that specific amino acids in this region do not contribute significantly to PAI-1 function. These findings have important implications for the role of reactive center residues in determining serine protease inhibitor (serpin) function and target specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号