首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
生态化学计量学特征及其应用研究进展   总被引:21,自引:0,他引:21  
曾冬萍  蒋利玲  曾从盛  王维奇  王纯 《生态学报》2013,33(18):5484-5492
生态化学计量学已成为生态学研究的热点问题。作为一门新兴学科,综观国内外最新研究进展,相关研究目前尚存在着许多不足。基于此,从全球与区域尺度、功能群尺度及个体水平3个方面阐述生态化学计量学特征,从空间、时间、生境和植物类型等生物与非生物因素综述生态化学计量学特征的驱动因素。并讨论生态化学计量学特征在限制性养分判断、生态系统稳定性、生长率与C:N:P关系中的应用。  相似文献   

2.
生态化学计量学:复杂生命系统奥秘的探索   总被引:106,自引:3,他引:103       下载免费PDF全文
 20世纪以来,生物科学的发展异军突起,成为发展最快的学科,不仅学科分类逐渐细化,而且研究领域也逐渐深入,然而,这种分化和深入也可能会掩盖生物的一些最普遍特征。地球上的生物是否具有统一的、更本质的特征?能否把不同生物学领域和不同层次的知识联系起来?随着对这些问题的不断探索,一门新兴的学科——生态化学计量学,在最近20年悄然兴起。生态化学计量学结合了生物学、化学和物理学等基本原理,是研究生物系统能量平衡和多重化学元素(主要是C、N、P)平衡的科学。这一研究领域使得生物学科不同层次(分子、细胞、有机体、种群、生态系统和全球尺度)的研究理论能够有机地统一起来。目前,生态化学计量学已经广泛应用于种群动态、生物体营养动态、微生物营养、寄主_病原关系、生物共生关系、消费者驱动的养分循环、限制性元素的判断、生态系统比较分析和森林演替与衰退及全球C、N、P生物地球化学循环等研究中,并取得了许多研究成果。该文概述了生态化学计量的概念、历史起源和基本理论,重点介绍了生态化学计量学理论在消费者驱动的养分循环、限制性养分元素判别以及全球C、N、P循环等方面的应用进展,并对生态化学计量学未来的研究方向进行了展望,期望引起国内同行的重视并有助于推动我国在此领域开展相关研究。  相似文献   

3.
生态化学计量学理论最早应用在水生生态系统的研究中,但最近20年来在陆地生态系统中也开展了大量的相关研究,特别是关于全球变化背景下陆地植物N/P生态化学计量学方面的研究得到很大的发展,极大地丰富和提升了我们对陆地植物包括生态系统生态过程的认识。就全球变化背景下陆地植物生态化学计量学的研究现状进行了综述,同时以中国科学院华南植物园90周庆为契机,总结我们关于南亚热带森林植物生态化学计量学的研究工作,进而分析当前存在的一些问题并提出今后研究的发展重点,以期促进和推动我园和我国生态化学计量学相关领域的研究。  相似文献   

4.
邢伟  吴昊平  史俏  刘寒  刘贵华 《生态科学》2015,34(1):190-197
生态化学计量学结合生物学、化学和物理学等基本原理, 研究碳、氮、磷等化学元素在各种生态过程中的平衡。由于生态化学计量学研究可以把生态实体的各个层次在元素水平上统一起来, 因此生态化学计量学已成为许多生态系统的新兴研究工具。目前, 生态化学计量学研究已深入到生态学的各个层次(分子、细胞、个体、种群、群落、生态系统)及区域等不同尺度。由于C、N、P 对有机体和生态系统的结构和功能的重要作用, C∶N∶P 化学计量学成为各种生态过程研究中的核心内容, 其基本理论(动态平衡理论、生长速率理论)围绕C∶N∶P 化学计量比而展开阐述。将生态化学计量学理论应用于全球格局下的生态系统研究时, 产生了许多崭新的成果(如植物营养全球格局等)。希望对生态化学计量学的概念、核心理论和全球格局下的应用以及该学说的完善与发展状况的简单介绍, 能有助于推动我国在此领域的相关研究。  相似文献   

5.
生态化学计量学主要是研究碳、氮、磷等元素在各种生态过程中平衡的一门科学,其核心问题是揭示生物体元素组成的差异对生态功能的影响。由于生态化学计量学研究可以把生态实体的各个层次在元素水平上统一起来,因此生态化学计量学已成为许多生态系统的新兴研究工具。目前,生态化学计量学的研究与应用已深入到生态学的各个层次(分子、细胞、个体、种群、群落、生态系统及区域等不同尺度)。该文围绕生态化学计量学的两个重要组成理论,并结合笔者近年来的研究,归纳总结了生态化学计量学在水生态系统中的研究与应用及未来研究重点,希望有助于推动我国生态化学计量学在水生态系统中的应用研究。  相似文献   

6.
利用CiteSpace 和 HistCite 文献计量方法, 对 CNKI 和 Web of Science核心数据库中2000—2019年发表的生态化学计量学领域的文献进行探究, 以期明确该领域研究变化特征与趋势, 为进一步把握发展方向和创新研究方法提供参考。结果表明: 1)自2000年起, 根据文献数量的分析, 国内外对生态化学计量学的研究都经历了初期、发展和快速发展三个阶段, 但我国对生态化学计量学的研究起步较晚。在国际上, 美国发文量居第一位, 我国发文量居第二位, 但我国文章篇均被引次数在发文量前十的国家中居末位, 且在国际合作中, 我国与除美国外其他国家间的合作较弱; 2)根据我国生态化学计量学研究中被引次数前十的文章分析, 综述类文章对我国生态化学计量学的发展起到了主要的推动作用; 3)国际上对生态化学计量学的研究重点和热点的发展趋势大致为植物、土壤、土壤酶、土壤微生物、植物-微生物-土壤综合体。我国对生态化学计量学的研究发展趋势与国际上具有一致性, 但研究时间有一定的滞后性。综上, 在发表综述类文章让学者了解本领域发展全貌的基础上, 进一步加强国际合作、发表高质量学术论文可以作为提高我国生态化学计量学研究国际地位的重要方法。此外, 在精准把握研究重点和热点的基础上, 积极探索新的研究重点、创新研究方法对我国生态化学计量学的发展也至关重要。  相似文献   

7.
植物生态化学计量内稳性特征   总被引:5,自引:0,他引:5  
化学计量内稳性是生态化学计量学研究的核心概念之一,是指生物在面对外界变化的时候保持自身化学组成相对稳定的能力,其反映了生物对周围环境变化作出的生理和生化响应与适应。通过研究植物生态化学计量内稳性,有助于深入了解植物对环境的适应策略和生态适应性,以及植物化学计量内稳性与生态系统功能的关系,但目前关于植物生态化学计量内稳性的研究较少。已有的研究结果表明:不同物种或功能群由于其生长策略不同而具有不同的生态化学计量内稳性特征;同一物种的不同器官、不同生长阶段以及不同元素的内稳性存在较大的差异。该文对植物生态化学计量内稳性概念、内稳性指数的测算方法,不同植物物种或功能群、不同器官、不同生长阶段内稳性特征,以及植物内稳性与生态系统结构、功能和稳定性的关系等方面进行了综述,并结合现已开展的工作,对有待进一步拓展的相关植物生态化学计量内稳性研究领域进行了展望,以期为促进国内相关研究工作的开展提供参考。  相似文献   

8.
生态化学计量学研究进展   总被引:55,自引:16,他引:39  
程滨  赵永军  张文广  安树青 《生态学报》2010,30(6):1628-1637
生态化学计量学结合生物学、化学和物理学等基本原理,研究能量和碳、氮、磷等化学元素在生态系统中,特别是各种生态系统过程(如竞争、捕食、寄生、共生等)参与者中的变化,以及它们之间的动态平衡,并分析这种平衡对生态系统的影响。目前,C∶N∶P化学计量学研究已深入到生态学的各个层次(细胞、个体、种群、群落、生态系统)及区域等不同尺度。近年来,由于认识到化学计量学研究可以把生态实体的各个层次在元素水平上统一起来,因此生态化学计量学已成为许多生态系统的新兴研究工具。其中,C∶N∶P化学计量学是各种生态过程研究中的核心内容。论述了生态化学计量学在物种、群落、生态系统等各层次的应用现状,并指出了C∶N∶P化学计量学研究的应用前景和发展趋势,以期引起同行的重视并推动该领域的进一步发展。  相似文献   

9.
植物生态化学计量特征及其主要假说   总被引:2,自引:0,他引:2       下载免费PDF全文
植物生态化学计量学是生态化学计量学的重要分支, 主要研究植物器官元素含量的计量特征, 以及它们与环境因子、生态系统功能之间的关系。19世纪, 化学家们通过室内实验, 分析了植物器官的元素含量, 开始了对植物化学元素之间关系的探索。如今, 生态学家通过野外采样和控制实验, 探索植物化学元素计量特征的变化规律、对全球变化的响应以及与植物功能属性之间的关系, 促进了植物生态化学计量学的快速发展。该文在概述植物生态化学计量学发展简史的基础上, 综述了19世纪以来该领域的研究进展。首先, 该文将植物生态化学计量学的发展历程概括为思想萌芽期、假说奠基期和理论构建期3个时期, 对各个时期的主要研究进行了简要回顾和梳理。第二, 概述了植物主要器官的化学计量特征, 尤其是陆生植物叶片氮(N)和磷(P)的计量特征。总体上, 全球陆生植物叶片N、P含量和N:P (质量比)的几何平均值分别为18.74 mg∙g-1、1.21 mg∙g-1和15.55 (与16:1的Redfield比一致); 在物种或群落水平上, 叶片N和P含量一般呈现随温度升高、降水增加而降低的趋势。不同生活型植物叶片N和P计量特征差异明显, 尤其是草本植物叶片N和P含量高于木本植物, 落叶阔叶木本植物叶片N和P含量高于常绿木本植物。与叶片相比, 细根和其他器官化学计量特征研究较少。第三, 总结了养分添加实验对植物化学元素计量特征的影响。总体上, N添加一般会提高土壤N的可利用性, 使植物器官中N含量和N:P升高, 在一定程度上提高植物生产力; P添加可能会缓解过量N输入导致的N-P失衡问题, 提高植物器官P含量。但是, 长期过量施肥会打破植物器官原有的元素间计量关系, 导致元素计量关系失衡和生产力下降。第四, 梳理总结了植物生态化学计量学的重要理论、观点和假说, 主要包括刻画化学计量特征与植物生长功能关系的功能关联假说、刻画化学计量特征与环境因子关系的环境关联假说或理论以及刻画化学计量特征与植物进化历史关系的进化关联假说。最后, 指出了植物生态化学计量学研究中存在的问题, 展望了10个未来需要重点关注的研究方向。  相似文献   

10.
陈蕾  李超伦 《生态学杂志》2014,25(10):3047-3055
生态化学计量学可以简单定义为从分子到生物圈的元素生物学,其跨越了环境和生命的各个层次,是构建从分子到生态系统统一化理论的新思路,是生态科学发展的必然趋势.海洋生物占地球生物圈总生物量的50%,是全球生物地球化学循环的重要组成部分,而浮游生物作为海洋生态系统物质循环和能量流动的重要环节,在海洋生态系统元素循环过程中起着关键作用.但是目前关于海洋浮游生物生态化学计量学的研究较零散和缺乏.因此,本文从限制元素影响海洋浮游生物的生态现象和机理、生化物质对营养限制的响应、营养限制的食物链传递与反馈4方面,对海洋浮游生物化学计量学研究进行综述,分析了该领域当前存在的问题,并对我国海洋浮游生物生态化学计量学研究的发展重点提出了展望.
  相似文献   

11.
Homeostasis of element composition is one of the central concepts of ecological stoichiometry. In this context, homeostasis is the resistance to change of consumer body composition in response to the chemical composition of consumer's food. To simplify theoretical analysis, it has generally been assumed that autotrophs exhibit flexibility in their composition, while heterotrophs are confined to a constant (strictly homeostatic) body composition. Yet, recent studies suggest that heterotrophs are not universally strictly homeostatic. We examined the degree to which autotrophs and heterotrophs regulate stoichiometric homeostasis (P:C, N:C, N:P, or %P and %N). We conducted a quantitative review and meta‐analysis using 132 datasets extracted from 57 literature sources which examined the dependence of organismal stoichiometry on resource stoichiometry. Among individual datasets, there was a wide range of responses from strictly homeostatic to non‐homeostatic. Even within heterotrophic organisms, varying levels of homeostasis were observed. Comparing the degree of homeostasis between organisms based on large‐scale habitat types using meta‐analysis indicated some significant differences between groups. For example, aquatic macroinvertebrates were significantly more homeostatic in terms of P:C than terrestrial invertebrates. Our meta‐analysis also confirmed that, with regard to N:P, heterotrophs are significantly more homeostatic than autotrophs. Furthermore, our analysis indicated that the homeostasis parameter 1/H, despite being a potentially useful predictive metric, has to be utilized with caution since it oversimplifies some important aspects of the responses of organisms to elemental imbalances. This critical evaluation of stoichiometric homeostasis contributes to a better understanding of many food‐web interactions, which are commonly driven by elemental imbalances between consumers and their resources.  相似文献   

12.
13.
《农业工程》2014,34(4):191-195
Organisms rely on a series of chemical reactions, which are constrained by the availability of key chemical elements, such as carbon (C), nitrogen (N), and phosphorus (P). Ecological stoichiometry provides a tool for analyzing how the balance of elements required by organisms affects food-web dynamics. Ecological stoichiometric theory suggests that the balance between supply and demand of elements is determined by the conversion efficiency from resources to organisms.Autotrophs and heterotrophs commonly face unequal access to and uptake of elements. The stoichiometric variability of autotrophs is based on their ability to maintain the balance of elements required for growth. This creates a challenge for their grazers. Phytoplankton can adjust their P content to ambient nutrient concentrations, while zooplankton cannot store excess nutrients. Ecological stoichiometric theory thus suggests that zooplankton have relatively fixed stoichiometry compared with phytoplankton.Nutrient limitation is common in aquatic systems. Stoichiometric imbalances between phytoplankton and zooplankton mean that zooplankton rarely find optimal food sources, and phytoplankton production is in excess. P availability potentially limits zooplankton growth, because of the high C:P ratio in phytoplankton relative to zooplankton demand. Based on the Liebig minimum principle, organisms are normally limited by a single nutrient, while everything else is in excess. Under P deficiency, excess C cannot be allocated to zooplankton somatic growth, and the net intake of C must balance the C:P ratio of zooplankton. Thus, when zooplankton encounter nutritionally imbalanced foods the elements in excess are released in order to maintain homeostasis. Excess C, released by zooplankton results in two biochemical challenges: (1) to sequester the limiting element and (2) to either store or dispose of the element in surplus.Zooplankton must resort to various physiological solutions to cope with these challenges. As a first option, zooplankton can reduce their C assimilation efficiency but maintain their P assimilation efficiency. Alternatively, after assimilation, excess C may be stored in C-rich compounds. Finally, assimilated excess C could also be disposed of through respiration or extracellular release. Excess C released by zooplankton reduces C transfer efficiency and sequestration in aquatic ecosystems.In aquatic ecosystems, C sequestration largely depends on the balance between uptake and demand for key nutrient elements. These feedback mechanisms have arisen only because organisms must obey stoichiometric rules at the cell and body levels, which greatly constrain the range of element values in ecosystems. Thus, the fate of C in ecosystems is determined by the absolute and relative demands for N and P of each organism. Limiting elements are utilized for growth and transferred in food chains with high efficiency, while non-limiting elements must be disposed of. Therefore, low C:P phytoplankton communities subject to high turnover rates and high productivity are selectively channeled into zooplankton. When zooplankton face high C:P foods, excess C is returned to the environment. Hence, nutrient-deficient phytoplankton constitute poor food, influencing the entire food web and adversely affecting secondary production at all levels.Excess C processed by zooplankton has far-reaching implications for ecosystem food-web functioning and C sequestration. Studies of the fate of excess C in zooplankton would increase the understanding of energy flow and material cycling in aquatic ecosystems. This paper reviews the reasons for P limitation and excess C in zooplankton, principal routes for the disposal of excess C, and the ecological effects of this. In addition, the paper aims to provide insight and a theoretical foundation for related studies in China.  相似文献   

14.
Little is known about the stoichiometry of nutrient cycling by detritivores. Therefore, we explored stoichiometric relationships in an omnivorous/detritivorous fish (gizzard shad, Dorosoma cepedianum) in three lakes that differed in productivity. Gizzard shad can feed on plankton and sediment detritus, but in all three lakes adult gizzard shad derived >98% of carbon (C) and phosphorus (P), and >90% of nitrogen (N) from sediment detritus, and the remainder from zooplankton.
Gizzard shad selectively consumed detritus with higher C, N and P concentrations than ambient lake sediments. Selective detritivory (i.e. the nutrient content of consumed detritus divided by the nutrient content of ambient detritus) was most pronounced in the lake with the lowest detrital nutrient concentrations. N and P cycling rates per fish were also consistently higher in this lake, in agreement with the prediction of stoichiometry theory that excretion rates should increase with food nutrient content. Among-lake differences in nutrient cycling rates were unrelated to inter-lake variation in fish body nutrient contents, which was minimal. The N:P ratio excreted was near Redfield (∼14:1) in all three lakes.
Stoichiometric analyses showed that the C:N and C:P ratios of sediment detritus were much higher (∼2.8×) than ratios of gizzard shad bodies, revealing substantial N and P imbalances between consumers and their food source. Gizzard shad alleviate N imbalance by selectively feeding on high N detritus (low C:N, high N:P), and apparently alleviate P imbalance by excreting nutrients at a higher N:P than that of their food or their bodies. Thus, this detritivore apparently regulates nutrient acquisition and allocation via both pre-absorption processes (selective feeding) and post-absorptive processes (differential N and P excretion).  相似文献   

15.
Dickman EM  Vanni MJ  Horgan MJ 《Oecologia》2006,149(4):676-689
The stoichiometric composition of autotrophs can vary greatly in response to variation in light and nutrient availability, and can mediate ecological processes such as C sequestration, growth of herbivores, and nutrient cycling. We investigated light and nutrient effects on phytoplankton stoichiometry, employing five experiments on intact phytoplankton assemblages from three lakes varying in productivity and species composition. Each experiment employed two nutrient and eight irradiance levels in a fully factorial design. Light and nutrients interactively affected phytoplankton stoichiometry. Thus, phytoplankton C:N, C:P, and N:P ratios increased with irradiance, and slopes of the stoichiometric ratio versus irradiance relationships were steeper with ambient nutrients than with nutrients added. Our results support the light–nutrient hypothesis, which predicts that phytoplankton C:nutrient ratios are functions of the ratio of available light and nutrients; however, we observed considerable variation among lakes in the expression of this relationship. Phytoplankton species diversity was positively correlated with the slopes of the C:N and C:P versus irradiance relationships, suggesting that diverse assemblages may exhibit greater flexibility in the response of phytoplankton nutrient stoichiometry to light and nutrients. The interactive nature of light and nutrient effects may render it difficult to generate predictive models of stoichiometric responses to these two factors. Our results point to the need for future studies that examine stoichiometric responses across a wide range of phytoplankton communities.  相似文献   

16.
1. Ecological stoichiometry has been used to better understand dynamics in consumer growth and the role of consumer‐recycled nutrients because it focuses on more than one element. Most research has focused on pelagic rather than benthic consumers. Variation in elemental composition among benthic consumer taxa would suggest that taxa differ in their susceptibility to nutrient limitation or in their role in recycling nutrients. 2. We collected benthic macroinvertebrates from streams in two regions (Indiana–Michigan and Wisconsin, U.S.A.) to examine taxonomic and regional variation in benthic macroinvertebrate body carbon (C), nitrogen (N), and phosphorus (P) concentrations and ratios. 3. Elemental composition varied little within taxa common to both regions. In contrast, elemental composition differed greatly among taxa and appeared to be related to phylogeny. The elemental composition of macroinvertebrates clustered into three distinct groups: insects, mollusks, and crustaceans. To a lesser extent, insects and mollusks also differed in elemental composition among genera. 4. Functional feeding groups (FFGs) differed in elemental composition, with predators having a higher N content than other groups. Substantial elemental imbalances between C and N were found between most primary consumers and their likely food sources, and the magnitude of the imbalance depended in part on the FFG. 5. Our results support an assumption of most ecological stoichiometry models that, within a species, the elemental composition of aquatic invertebrates is relatively constant. Variation in elemental composition among taxa at various higher taxonomic levels suggests that susceptibility of stream invertebrates to nutrient limitation and their role in nutrient cycling will strongly depend on phylogeny.  相似文献   

17.
Understanding the reciprocal interactions between the evolved characteristics of species and the environment in which each species is embedded is a major priority for evolutionary ecology. Here we use the perspective of ecological stoichiometry to test the hypothesis that natural selection on body growth rate affects consumer body stoichiometry. As body elemental composition (nitrogen, phosphorus) of consumers influences nutrient cycling and trophic dynamics in food webs, such differences should also affect biogeochemical processes and trophic dynamics. Consistent with the growth rate hypothesis, body growth rate and phosphorus content of individuals of the Daphnia pulex species complex were lower in Wisconsin compared to Alaska, where the brevity of the growing season places a premium on growth rate. Consistent with stoichiometric theory, we also show that, relative to animals sampled in Wisconsin, animals sampled in Alaska were poor recyclers of P and suffered greater declines in growth when fed low‐quality, P‐deficient food. These results highlight the importance of evolutionary context in establishing the reciprocal relationships between single species and ecosystem processes such as trophic dynamics and consumer‐driven nutrient recycling.  相似文献   

18.
This study investigates how nutrient cycling rates and ratios vary among fish species, with a particular focus on comparing an ecologically dominant detritivore (gizzard shad) to other fishes in a productive lake. We also examined how nutrient cycling rates are mediated by body size (as predicted by allometry theory), and how variation in nutrient cycling is related to body and food nutrient contents (according to predictions of ecological stoichiometry). As predicted by allometry, per capita nitrogen and phosphorus excretion rates increased and mass-specific excretion rates decreased, with increasing mass. Body phosphorus content was correlated with body mass only in one species, bluegill. Contrary to stoichiometric predictions, there was no relationship between body P and mass-normalized P excretion rate, or between body N:P and excreted N:P, when all individuals of all species were considered.
However, at the species level, we observed some support for a body nutrient content effect on excretion as predicted by stoichiometry theory. For example, gizzard shad had lower body P (high body N:P) and also excreted P at higher rates (lower N:P) than bluegill, which had high body P (lower body N:P). We applied the Sterner (1990) homeostatic stoichiometry model to the two most common species in the study – gizzard shad and bluegill and found that food N:P had a greater effect than consumer body N:P on excreted N:P. This indicates that, in terms of variation among these species, nutrient excretion may be more of a function of food nutrient content than the nutrient content of the consumer. These results suggest that stoichiometry can provide a framework for variation among species in nutrient cycling and for evaluating the ecosystem consequences of biodiversity loss.  相似文献   

19.
ABSTRACT. The balance of essential elements (e.g. carbon [C], nitrogen [N], and phosphorus [P]) between consumers and their resources influences not only the growth and reproduction of the consumers but also the nutrients they regenerate. Flagellate protists are significant predators of aquatic bacteria and directly influence nutrient flow to higher trophic levels and, through excretion, influence the mineral element composition of dissolved nutrients. Because the element stoichiometry of protists is poorly characterized, we varied the resource composition of the bacterium Pseudomonas fluorescens and used it to grow the mixotrophic bacterivorous flagellate Ochromonas danica. Using a mass balance approach, the element composition of O. danica was found to vary depending upon the nutrient composition of the prey and ranged between 482:36:1 and 80:12:1 (C:N:P molar). Homeostasis plots suggested that flagellate protists weakly regulate their element composition and are likely to regenerate different elements depending upon the nature of the element limiting growth of their prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号