首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
【目的】构建米曲霉RIB40的全长cDNA表达文库,为米曲霉功能基因的开发以及次生代谢产物合成途径相关基因的筛选与克隆奠定基础。【方法】采用RNAiso法从米曲霉RIB40菌体中提取总RNA。选用PolyATract mRNA Isolation System Ⅲ试剂盒分离纯化mRNA。以5μg mRNA为模板,按照ZAP-cDNA Synthesis Kit试剂盒说明书要求合成单、双链cDNA,使用CHROMA SPIN-400柱离心层析纯化后连接于Uni-ZAP XR表达载体上,体外包装后转染Escherichia coli XL1-Blue宿主菌。【结果】构建了米曲霉RIB40的全长cDNA文库,初级文库滴度约为2.96×106 CFU/mL,重组率约为97.8%,插入片段平均长度大于1.5 kb,达到一个高质量cDNA文库的要求。文库扩增后,滴度达到3.4×1010 CFU/mL。【结论】米曲霉RIB40全长cDNA表达文库的成功构建,将会对米曲霉基础生物学研究及相关基因的筛选与克隆奠定基础。  相似文献   

2.
许娜  王海燕  聂尧  徐岩  肖荣   《微生物学通报》2006,33(4):112-118
根据纯化得到的(R)-专一性羰基还原酶(rCR)蛋白质测序结果推导出的核苷酸序列设计引物,以筛选得到的近平滑假丝酵母(Candida parapsilosis)CCTCC M203011基因组为模板,通过PCR扩增目的片段,克隆后测序。核苷酸序列测定结果表明rcr基因全长1011bp,共编码336个氨基酸,分子量为35.9kD。将序列递交NCBI比对,与醇脱氢酶超家族成员序列同源性达99%。在大肠杆菌(Escherichia coli)JM109中表达rcr基因,重组菌可还原β-羟基苯乙酮得到(R)-苯乙二醇,光学纯度为100%e.e,摩尔产率为80.4%,在反应体系中无需外加辅酶再生系统即可完成转化。  相似文献   

3.
手性醇是一类非常重要的化合物,羰基还原酶催化酮的不对称还原生成对应的手性醇.从毕赤酵母Pichia pastoris GS115基因组数据中找到一个潜在的NADPH依赖的羰基还原酶,研究毕赤酵母 P.pastoris GS115中的羰基还原酶.根据其核酸序列设计引物,从P.pastoris GS115基因组中扩增到目的基因ppcr,大肠杆菌BL21 (DE3)中表达,Ni-NTA纯化,对酶的性质和底物谱进行了研究.PPCR的最适反应温度为35℃,最适反应pH为6.0,低于45℃时有很好的稳定性.对3-甲基-2-羰基丁酸乙酯的Km和kcat分别为9.48 mmol/L和0.12 s-1. PPCR表现出广泛的底物谱和很高的对映选择性,对醛、α-酮酯、芳香族β-酮酯及芳香族酮都表现出了很好的活性,在测定的底物中,除极少数底物外,ee值均达到97%以上.因此,PPCR具有较好的应用前景.  相似文献   

4.
根据纯化得到的?-专一性羰基还原酶(rCR)蛋白质测序结果推导出的核苷酸序列设计引物,以筛选得到的近平滑假丝酵母(Candida parapsilosis)CCTCC M203011基因组为模板,通过PCR扩增目的片段,克隆后测序。核苷酸序列测定结果表明rcr基因全长1011bp,共编码336个氨基酸,分子量为35·9kD。将序列递交NCBI比对,与醇脱氢酶超家族成员序列同源性达99%。在大肠杆菌(Escherichia coli)JM109中表达rcr基因,重组  相似文献   

5.
【目的】裂解性多糖单加氧酶(lytic polysaccharide monooxygenases,LPMOs)是一类以氧化方式断裂多聚糖糖苷键的新型木质纤维素降解酶,本文旨在挖掘新型LPMOs并研究其性质。【方法】从米曲霉中克隆LPMO基因,利用毕赤酵母表达系统进行异源表达,研究其酶学性质和还原剂对其活性的影响,进一步探讨LPMO与糖苷水解酶协同作用时的底物结合现象。【结果】Ao LPMO2和Ao LPMO5序列分析显示,两种蛋白都为辅助酶类9家族的LPMOs;电击转化至真核毕赤酵母GS115中,获得双拷贝转化子GS/AO5-4,经1%甲醇诱导4 d后,上清液蛋白表达量为0.19±0.01 g/L。重组蛋白分子量约34 k Da,高于理论分子量,推测可能存在翻译后修饰。酶学性质分析表明,Ao LPMO5对刺槐豆胶的最适反应温度和p H分别为60°C和5.0,Km和Vmax分别为8.72±1.99 mg/m L和109.4±12.8μmol/(s·mg)。0.1 mmol/L Cu^2+促进酶活性提高(7.10±1.32)%(P<0.05),0.5、2.0和2.5 mmol/L H2O2分别促进酶活性提高(21.11±6.17)%(P<0.01)、(20.22±1.13)%(P<0.01)和(18.40±2.86)%(P<0.01),而没食子酸和维生素C对活性无明显作用。在反应前期,Ao LPMO5与刺槐豆胶底物结合从而影响甘露聚糖酶Bs MAN3的降解作用。而在反应后期,Ao LPMO5与Bs MAN3则表现出协同增效作用。【结论】Ao LPMO5是一种全新的生物质降解酶,阐明其酶学性质和底物作用方式,将为天然木质纤维素类底物的高效转化与生物炼制,如第二代生物乙醇、功能性低聚寡糖等生产建立基础。  相似文献   

6.
果胶酶具有广阔的商业用途,在食品工业上主要用于果汁和酒类的澄清、提高植物油的提取率、提高水果的硬度和植物纤维脱胶。米曲霉(Aspergillusoryzae)一直用于传统发酵食品的生产,自然条件下其果胶酶的产量较低。文献报道的果胶酶的重组表达成功的例子较少,且活性较低。通过RT-PCR的方法,获得不含信号肽的果胶酸内切水解酶A(polygalacturonaseA,PGA)的cDNA,PGAcDNA连入pET-28a( )载体,构建pET-28a( )-pga质粒。pET-28a( )-pga转化Turner(DE3)placⅠ细胞,得到转化子pET-28a( )-pga-Turner(DE3)placⅠ,首次实现了米曲霉PGA在大肠杆菌系统中过表达,进一步对PGA在大肠杆菌系统中表达的条件进行了研究。在37℃、220r/min条件培养pET-28a( )-pga-Turner(DE3)placⅠ细胞,OD600至0·8左右时,用500μmol/Lisopropylβ-D-thiogalactogalactopyranoside(IPTG)进行诱导表达,在15℃和170r/min条件下继续培养24h,表达效果最好,相对于每毫升培养基而言,产酶可达到70u/mL,是米曲霉自然条件产酶量的87·5倍,远优于文献报道的重组表达的PGA酶活。  相似文献   

7.
由本实验室筛选得到的摩尔摩根氏菌J-8菌株可将底物1-苯基-2-甲氨基丙酮专一性地转化为d-伪麻黄碱。以M. morganii J-8为出发菌株,菌体超声破碎后,经硫酸铵沉淀、Phenyl Superose疏水柱层析、DEAD阴离子柱层析和非变性凝胶电泳四步纯化获得电泳纯羰基不对称还原酶。亚基分子质量为42.5 kD,高效液相色谱分析酶的分子质量约为84.1 kD,初步认为该酶为二聚体蛋白。对所得到的部分纯化酶的酶学性质做了初步研究,纯酶进行基质辅助激光解析电离-飞行质谱分析,比对结果显示为与亮氨酸脱氢酶蛋白有很高相似性。  相似文献   

8.
由本实验室筛选得到的摩尔摩根氏菌J-8菌株可将底物1-苯基-2-甲氨基丙酮专一性地转化为d-伪麻黄碱。以M. morganii J-8为出发菌株,菌体超声破碎后,经硫酸铵沉淀、Phenyl Superose疏水柱层析、DEAD阴离子柱层析和非变性凝胶电泳四步纯化获得电泳纯羰基不对称还原酶。亚基分子质量为42.5 kD,高效液相色谱分析酶的分子质量约为84.1 kD,初步认为该酶为二聚体蛋白。对所得到的部分纯化酶的酶学性质做了初步研究,纯酶进行基质辅助激光解析电离-飞行质谱分析,比对结果显示为与亮氨酸脱氢酶蛋白有很高相似性。  相似文献   

9.
摘要:【目的】使近平滑假丝酵母(Candida parapsilosis CCTCC M203011)的(S) -羰基还原酶II 表达并包埋于酿酒酵母(Saccharomyces cerevisiae AN120)孢子中,实现了重组酶高效催化生产(S) -苯基乙二醇的转化过程。【方法】采用PCR 扩增技术,从近平滑假丝酵母基因组中克隆(S) -羰基还原酶II 基因,于酿酒酵母AN120中表达,以醋酸钾为唯一碳源诱导培养产生孢子,包埋(S)-羰基还原酶II。以该孢子为生物催化剂,2-羟基苯乙酮为底物进行生物转化反应,经HPLC分析,计算产物的光学纯度和得率。考察了孢子催化转化反应的最适温度和pH值,温度和pH 稳定性以及多批次使用性能。【结果】在最适反应温度40℃和pH6.0条件下,10%(W/V)子囊孢子催化6 g/L 2-羟基苯乙酮,产物(S) -苯基乙二醇的光学纯度和得率均高达99%以上。与重组大肠杆菌相比较,重组孢子合成(S)-苯基乙二醇的得率由89.7% 提高到99.0%,反应时间由48 h缩短为4 h;连续使用10批次后,其催化产物的光学纯度几乎不变,得率保持在85%以上。【结论】该研究首次实现了氧化还原酶在酵母孢子内的异源表达,为手性化合物的高效制备奠定了坚实的研究基础。  相似文献   

10.
不对称还原胺化反应是制备医药中间体手性胺结构单元的重要反应。目前已有许多不同种类的酶被应用于合成手性胺,其中NAD(P)H依赖型氧化还原酶催化的还原胺化反应最为引人注目,因为其能够一步将潜手性酮化合物完全转化为光学纯的手性胺化合物。文中以亚胺还原酶、氨基酸脱氢酶、冠瘿碱脱氢酶和还原性酮胺化酶为例,从NAD(P)H依赖型氧化还原酶的结构特征、作用机理、分子改造及催化应用等方面,综述了其在不对称还原胺化合成手性胺领域的研究进展。  相似文献   

11.
The asymmetric bioreduction of activated alkenes catalyzed by flavin-dependent enoate reductases from the OYE-family represents a powerful method for the production of optically active compounds. For its preparative-scale application, efficient and economic NADH-recycling is crucial. A novel enzyme-coupled NADH-recycling system is proposed based on the concurrent oxidation of a sacrificial sec-alcohol catalyzed by an alcohol dehydrogenase (ADH-A). Due to the highly favorable position of the equilibrium of ene-reduction versus alcohol-oxidation, the cosubstrate is only required in slight excess.  相似文献   

12.
    
The growing importance of biocatalysis in the syntheses of enantiopure molecules results from the benefits of enzymes regarding selectivity and specificity of the reaction and ecological issues of the process. Ene‐reductases (ERs) from the old yellow enzyme family have received much attention in the last years. These flavo‐enzymes catalyze the trans‐specific reduction of activated C?C bonds, which is an important reaction in asymmetric synthesis, because up to two stereogenic centers can be created in one reaction. However, limitations of ERs described in the literature such as their moderate catalytic activity and their strong preference for NADPH promote the search for novel ERs with improved properties. In this study, we characterized nine novel ERs from cyanobacterial strains belonging to different taxonomic orders and habitats. ERs were identified with activities towards a broad spectrum of alkenes. The reduction of maleimide was catalyzed with activities of up to 35.5 U mg?1 using NADPH. Ketoisophorone and (R)‐carvone, which were converted to the highly valuable compounds (R)‐levodione and (2R,5R)‐dihydrocarvone, were reduced with reaction rates of up to 2.2 U mg?1 with NADPH. In contrast to other homologous ERs from the literature, NADH was accepted at moderate to high rates as well: Enzyme activities of up to 16.7 U mg?1 were obtained for maleimide and up to 1.3 U mg?1 for ketoisophorone and (R)‐carvone. Additionally, excellent stereoselectivities were achieved in the reduction of (R)‐carvone (97–99% de). In particular, AnabaenaER3 from Anabaena variabilis ATCC 29413 and AcaryoER1 from Acaryochloris marina MBIC 11017 were identified as useful biocatalysts. Therefore, novel ERs from cyanobacteria with high catalytic efficiency were added to the toolbox for the asymmetric reduction of alkenes. Biotechnol. Bioeng. 2013; 110: 1293–1301. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A study of Taka-amylase A of conidia from Aspergillus oryzae RIB40 was done. During the research, proteins from conidia and germinated conidia were analyzed using SDS–PAGE, 2-D gel electrophoresis, Western blot analysis, MALDI-TOF Mass spectrometry, and native-PAGE combined with activity staining of TAA. The results showed that TAA exists not only in germinated conidia but also in conidia. Some bands representing degraded products of TAA were detected. Conidia, which formed on starch (SCYA), glucose (DCYA), and glycerol (GCYA) plates, contained mature TAA. Only one active band of TAA was detected after native-PAGE activity staining. In addition, TAA activity was detected in cell extracts of conidia using 0.5 M acetate buffer, pH 5.2, as extraction buffer, but was not detected in whole conidia or cell debris. The results indicate that TAA exists in conidia in active form even when starch, glucose, or glycerol is used as carbon source. TAA might belong to a set of basal proteins inside conidia, which helps in imbibition and germination of conidia.  相似文献   

14.
    
The genes encoding yeast old yellow enzymes (OYE 1, 2, and 3) and NAD(P)H-dependent 2-cyclohexen-1-one reductase from Zymomonas mobilis (NCR) were expressed separately in Escherichia coli. All four recombinant strains reduced the carbon double bond in alpha,beta-unsaturated alkenals and alkenones, however rates and enantio-specificities differed. Which of the two possible enantiomers was predominantly formed, was not only dependent on the choice of enzyme but also on the substrate: In addition to a dependency on methylation in alpha- or beta-position, the data of this study illustrate that firstly the E- or Z-configuration (cis- or trans-) of the carbon double-bond and secondly the remainder of the substrate molecule play roles in determining enantio-specificity. Based on the currently accepted mechanism of flavin mediated anti-hydrogenation of the carbon double bond, the data in this study may be explained by a flipped orientation of some of the substrates in the active center of OYE.  相似文献   

15.
The cDNA encoding a putative xylose reductase (xyrA) from Aspergillus oryzae was cloned and coexpressed in the yeast Saccharomyces cerevisiae with A. oryzae xylitol dehydrogenase cDNA (xdhA). XyrA exhibited NADPH-dependent xylose reductase activity. The S. cerevisiae strain, overexpressing the xyrA, xdhA, endogenous XKS1, and TAL1 genes, grew on xylose as sole carbon source, and produced ethanol.  相似文献   

16.
Old yellow enzymes (OYEs, EC 1.6.99.1) are flavin-dependent oxidoreductases that catalyze the stereoselective trans-hydrogenation of the double bond, representing a promising alternative to metal-based catalysis. Bioconversion of ketoisophorone (KIP) by 28 non-conventional yeasts belonging to 16 different species was investigated. Growing cells of most of the strains reduced KIP via OYE and showed high stereoselectivity, producing R-levodione as major product. Competition by carbonyl reductase (CR) activity was observed in several strains. The best performing yeasts belong to Candida castellii, Kazachstania spencerorum and Kluyveromyces marxianus exhibited yields of levodione ≥77% up to 95% e.e., and. Candida freyschussii, the sole strain lacking the OYE gene, reduced KIP only to unsaturated alcohols via CR. Nine unedited OYE genes were cloned, sequenced, and heterologously expressed in Saccharomyces cerevisiae BY4741ΔOye2, a mutant that showed negligible OYE and CR activities. Compared with the corresponding wild-type yeasts, growing cells of the recombinant strains bioconverted KIP with improved yields of OYE products, minor competition by CR activity, and lower enantioselectivity. In particular, resting cells of recombinant S. cerevisae presented the best performance in KIP bioconversion. Based on the results herein reported, selected strains of non-conventional yeasts and novel OYE genes can be profitably used as innovative biocatalysts in asymmetric reductions.  相似文献   

17.
Oil pollution is an environmental problem of increasing importance. Alcanivorax borkumensis, with a high potential for biotechnological applications, is a key marine hydrocarbonoclastic bacterium and plays a critical role in the bioremediation of oil-polluted marine systems. In oil degrading bacteria, the first step of alkane degradation is catalyzed by a monooxygenase. The reducing electrons are tunneled from NAD(P)H via rubredoxin, one of the most primitive metalloproteins, to the hydroxylase. Rubredoxin reductase is a flavoprotein catalyzing the reduction of rubredoxin. There are two rubredoxin genes, alkG and rubA, in A. borkumensis genome. In this work, the genes encoding rubredoxin reductase (ABO_0162, rubB) and AlkG(ABO_2708, alkG) were cloned and functionally overexpressed in E. coli. Our results demonstrate that RubB could reduce AlkG, therefore compensating for the absence of AlkT, also a rubredoxin reductase, missing in A. borkumensis SK2 genome. These results will increase our knowledge concerning biological alkane degradation and will lead us to design more efficient biotransformation and bioremediation systems.  相似文献   

18.
The enzyme activities of Clostridium La 1 and Clostridium kluyveri involved in the stereospecific hydrogenation of ,-unsaturated carbonyl compounds with hydrogen gas were measured. In C. La 1 the specific activities of hydrogenase and enoate reductase depended heavily on the growth phase and the composition of the medium. During growth in batch cultures on 70 mM crotonate the specific activity of hydrogenase increased and then dropped to about 10% of its maximum value, whereas the activity of enoate reductase reached its maximum in cells of the stationary phase. Under certain conditions during growth the activity ratio hydrogenase: enoate reductase changed from 120 to 1. Thus, the rate limiting enzyme for the hydrogenation can be either the hydrogenase or the enoate reductase, depending on the growth conditions of the cells.The specific activities of ferredoxin-NAD reductase and butyryl-CoA dehydrogenase increased 3-4-fold during growth on crotonate. By turbidostatic experiments it was shown that at constant input of high crotonate concentrations (200 mM) the enoate reductase activity was almost completely suppressed; it increased steadily with decreasing crotonate down to an input concentration of 35 mM.Glucose as carbon source led to high hydrogenase and negligible enoate reductase activities. The latter could be induced by changing the carbon source of the medium from glucose to crotonate. Tetracycline inhibited the formation of enoate reductase.A series of other carbon sources was tested. They can be divided into ones which result in high hydrogenase and rather low enoate reductase activities and others which cause the reverse effect.When the Fe2+ concentration in crotonate medium was growth limiting, cells with relatively high hydrogenase activity and very low enoate reductase activity in the stationary phase were obtained. At Fe2+ concentrations above 3·10-7 M enoate reductase increased and hydrogenase activity reached its minimum. The ratio of activities changes by a factor of about 200. In a similar way the dependence of enzyme activities on the concentration of sulfate was studied.In batch cultures of Clostridium kluyveri a similar opposite time course of enoate reductase and hydrogenase was found.The possible physiological significance of this behavior is discussed.Non Standard Abbreviations O.D.578 Optical density at 578 nm Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

19.
AIMS: To purify and characterize the (R)-specific carbonyl reductase from Candida parapsilosis; to compare the enzyme with other stereospecific oxidoreductases; and to develop an available procedure producing optically active (R)-1-phenyl-1,2-ethanediol (PED). METHODS AND RESULTS: An (R)-specific carbonyl reductase was found and purified from C. parapsilosis through four steps, including blue-sepharose affinity chromatography. The relative molecular mass of the enzyme was estimated to be 35 kDa on gel-filtration chromatography and 37.5 kDa on Sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme catalysed the reduction of various ketones, including alkyl and aromatic ketones, and was specific to short-chain and medium-chain alkyl ketones. The enzyme activity was inhibited by divalent ion of CuSO(4) and FeSO(4), whereas zincum ion stimulated its activity. For catalysing reduction, the enzyme performed maximum activity at pH 6.0 and the optimum temperature was 45 degrees C. The carbonyl reductase catalysed asymmetric reduction of beta-hydroxyacetophenone to the corresponding (R)-PED with the optical purity of 100% enantiomeric excess (e.e.). By analysing its partial amino acid sequences, the enzyme was proposed to be a novel stereospecific carbonyl reductase. CONCLUSIONS: The purified carbonyl reductase showed unusual stereospecificity and catalysed the NADH-dependent reduction of beta-hydroxyacetophenone to (R)-PED. The enzyme was different from other stereoselective oxidoreductases in catalytic properties. SIGNIFICANCE AND IMPACT OF THE STUDY: The discovery of (R)-specific oxidoreductase exhibiting unusual stereospecificity towards hydroxyl ketone is valuable for the synthesis of both enantiomers of useful chiral alcohols, and provides research basis for the achievement of profound knowledge on the relationship between structure and catalytic function of (R)-specific enzymes, which is meaningful for the alteration of stereospecificity by molecular methods to obtain the enzymes with desired stereospecificity.  相似文献   

20.
Two flavohemoglobin (FHb) genes, fhb1 and fhb2, were cloned from Aspergillus oryzae. The amino acid sequences of the deduced FHb1 and FHb2 showed high identity to other FHbs except for the predicted mitochondrial targeting signal in the N-terminus of FHb2. The recombinant proteins displayed absorption spectra similar to those of other FHbs. FHb1 and FHb2 were estimated to be a monomer and a dimer in solution, respectively. Both of the isozymes exhibit high NO dioxygenase (NOD) activity. FHb1 utilizes either NADH or NADPH as an electron donor, whereas FHb2 can only use NADH. These results suggest that FHb1 and FHb2 are fungal counterparts of bacterial FHbs and act as NO detoxification enzymes in the cytosol and mitochondria, respectively. This study is the first to show that a microorganism contains two isozymes of FHb and that intracellular localization of the isozymes could differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号