首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.  相似文献   

2.
The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell.  相似文献   

3.
Human cell lines were isolated that express the V protein of either simian virus 5 (SV5) or human parainfluenza virus type 2 (hPIV2); the cell lines were termed 2f/SV5-V and 2f/PIV2-V, respectively. STAT1 was not detectable in 2f/SV5-V cells, and the cells failed to signal in response to either alpha/beta interferons (IFN-alpha and IFN-beta, or IFN-alpha/beta) or gamma interferon (IFN-gamma). In contrast, STAT2 was absent from 2f/PIV2-V cells, and IFN-alpha/beta but not IFN-gamma signaling was blocked in these cells. Treatment of both 2f/SV5-V and 2f/PIV2-V cells with a proteasome inhibitor allowed the respective STAT levels to accumulate at rates similar to those seen in 2fTGH cells, indicating that the V proteins target the STATs for proteasomal degradation. Infection with SV5 can lead to a complete loss of both phosphorylated and nonphosphorylated forms of STAT1 by 6 h postinfection. Since the turnover of STAT1 in uninfected cells is longer than 24 h, we conclude that degradation of STAT1 is the main mechanism by which SV5 blocks interferon (IFN) signaling. Pretreatment of 2fTGH cells with IFN-alpha severely inhibited both SV5 and hPIV2 protein synthesis. However, and in marked contrast, pretreatment of 2fTGH cells with IFN-gamma had little obvious effect on SV5 protein synthesis but did significantly reduce the replication of hPIV2. Pretreament with IFN-alpha or IFN-gamma did not induce an antiviral state in 2f/SV5-V cells, indicating either that the induction of an antiviral state is completely dependent on STAT signaling or that the V protein interferes with other, STAT-independent cell signaling pathways that may be induced by IFNs. Even though SV5 blocked IFN signaling, the addition of exogenous IFN-alpha to the culture medium of 2fTGH cells 12 h after a low-multiplicity infection with SV5 significantly reduced the subsequent cell-to-cell spread of virus. The significance of the results in terms of the strategy that these viruses have evolved to circumvent the IFN response is discussed.  相似文献   

4.
A new role of the Paramyxovirus accessory proteins has been uncovered. The P gene of the subfamily Paramyxovirinae encodes accessory proteins including the V and/or C protein by means of pseudotemplated nucleotide addition (RNA editing) or by overlapping open reading frame. The Respirovirus (Sendai virus and human parainfluenza virus (hPIV)3) and Rubulavirus (simian virus (SV)5, SV41, mumps virus and hPIV2) circumvent the interferon (IFN) response by inhibiting IFN signaling. The responsible genes were mapped to the C gene for SeV and the V gene for rubulaviruses. On the other hand, wild type measles viruses isolated from clinical specimens suppress production of IFN, although responsible viral factors remain to be identified. Both human and bovine respiratory syncytial viruses (RSVs) counteract the antiviral effect of IFN with inhibiting neither IFN signaling nor IFN production. Bovine RSV NS1 and NS2 proteins cooperatively antagonize the antiviral effect of IFN. Studies on the molecular mechanism by which viruses circumvent the host IFN response will not only illustrate co-evolution of virus strategies of immune evasion but also provide basic information useful for engineering novel antiviral drugs as well as recombinant live vaccine.  相似文献   

5.
Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)‐labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3‐virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co‐injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell‐to‐cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3‐vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actin‐dependent RNA movement. The 5′ methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5′ cap failed to form granules and was degraded in the cytoplasm. Removal of the 3′ untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual‐labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER‐bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.  相似文献   

6.
To prove whether error catastrophe/lethal mutagenesis is the primary antiviral mechanism of action of ribavirin against foot-and-mouth disease virus (FMDV). Ribavirin passage experiments were performed and supernatants of Rp1 to Rp5 were harvested. Morphological alterations as well as the levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected using the supernatants of Rp1 to Rp5 and control were measured by microscope, real-time RT-PCR, western-blotting and plaque assays, respectively. The mutation frequency was measured by sequencing the complete P1- and 3D-encoding region of FMDV after a single round of virus infection from ribavirin-treated or untreated FMDV-infected cells. Ribavirin treatment for FMDV caused dramatically inhibition of multiplication in cell cultures. The levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected were more greatly reduced along with the passage from Rp1 to Rp5, moreover, nucleocapsid protein could not be detected and no recovery of infectious virus in the supernatant or detection of intracellular viral RNA was observed at the Rp5-infected cells. A high mutation rate, giving rise to an 8-and 11-fold increase in mutagenesis and resulting in some amino acid substitutions, was found in viral RNA synthesized at a single round of virus infection in the presence of ribavirin of 1000 microM and caused a 99.7% loss in viral infectivity in contrast with parallel untreated control virus. These results suggest that the antiviral molecular mechanism of ribavirin is based on the lethal mutagenesis/error catastrophe, that is, the ribavirin is not merely an antiviral reagent but also an effective mutagen.  相似文献   

7.
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito‐borne diseases whereas ZIKV infection occasionally re‐emerged in the past causing outbreaks. Although there have been considerable advances in understanding the pathophysiology of these viruses, no effective vaccines or antiviral drugs are currently available. In this study, we evaluated the antiviral activity of carnosine, an endogenous dipeptide (β‐alanyl‐l ‐histidine), against DENV serotype 2 (DENV2) and ZIKV infection in human liver cells (Huh7). Computational studies were performed to predict the potential interactions between carnosine and viral proteins. Biochemical and cell‐based assays were performed to validate the computational results. Mode‐of‐inhibition, plaque reduction, and immunostaining assays were performed to determine the antiviral activity of carnosine. Exogenous carnosine showed minimal cytotoxicity in Huh7 cells and rescued the viability of infected cells with EC50 values of 52.3 and 59.5 μM for DENV2 and ZIKV infection, respectively. Based on the mode‐of‐inhibition assays, carnosine inhibited DENV2 mainly by inhibiting viral genome replication and interfering with virus entry. Carnosine antiviral activity was verified with immunostaining assay where carnosine treatment diminished viral fluorescence signal. In conclusion, carnosine exhibited significant inhibitory effects against DENV2 and ZIKV replication in human liver cells and could be utilized as a lead peptide for the development of effective and safe antiviral agents against DENV and ZIKV.  相似文献   

8.
The broad spectrum of antiviral activity of ribavirin (RBV) lies in its ability to inhibit IMP dehydrogenase, which lowers cellular GTP. However, RBV can act as a potent mutagen for some RNA viruses. Previously we have shown a lack of correlation between antiviral activity and GTP repression for Hantaan virus (HTNV) and evidence for RBV's ability to promote error-prone replication. To further explore the mechanism of RBV, GTP levels, specific infectivity, and/or mutation frequency was measured in the presence of RBV, mycophenolic acid (MPA), selenazofurin, or tiazofurin. While all four drugs resulted in a decrease in the GTP levels and infectious virus, only RBV increased the mutation frequency of viral RNA (vRNA). MPA, however, could enhance RBV's mutagenic effect, which suggests distinct mechanisms of action for each. Therefore, a simple drop in GTP levels does not drive the observed error-prone replication. To further explore RBV's mechanism of action, we made a comprehensive analysis of the mutation frequency over several RBV concentrations. Of importance, we observed that the viral population reached a threshold after which mutation frequency did not correlate with a dose-dependent decrease in the level of vRNA, PFU, or [RTP]/[GTP] (where RTP is ribavirin-5'-triphosphate) over these same concentrations of RBV. Modeling of the relationship of mutation frequency and drug concentration showed an asymptotic relationship at this point. After this threshold, approximately 57% of the viral cDNA population was identical to the wild type. These studies revealed a lethal threshold, after which we did not observe a complete loss of the quasispecies structure of the wild-type genome, although we observed extinction of HTNV.  相似文献   

9.
Src homology phosphotyrosyl phosphatase 2 (Shp‐2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp‐2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp‐2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp‐2 does not affect viral replication or virus‐induced interferon‐alpha (IFN‐α) production. Interestingly, whereas A549 cells were activated by IFN‐α, the blocking of Shp‐2 resulted in increased viral replication that was associated with the reduced expression of the IFN‐stimulated genes of 2′,5′‐oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp‐2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN‐α‐induced Jak/Stat1 pathway activation rather than by affecting the production of IFN‐α itself.  相似文献   

10.
In cells that allow replication of vesicular stomatitis virus (VSV), there are two phases of translation inhibition: an early block of host translation and a later inhibition of viral translation. We investigated the phosphorylation of the alpha subunit of the eIF2 complex during these two phases of viral infection. In VSV-infected cells, the accumulation of phosphorylated (inactivated) eIF2alpha did not begin until well after host protein synthesis was inhibited, suggesting that it only plays a role in blocking viral translation later after infection. Consistent with this, cells expressing an unphosphorylatable eIF2alpha showed prolonged viral protein synthesis without an effect on host protein synthesis inhibition. Induction of eIF2alpha phosphorylation at early times of viral infection by treatment with thapsigargin showed that virus and host translation are similarly inhibited, demonstrating that viral and host messages are similarly sensitive to eIF2alpha phosphorylation. A recombinant virus that expresses a mutant matrix protein and is defective in the inhibition of host and virus protein synthesis showed an altered phosphorylation of eIF2alpha, demonstrating an involvement of viral protein function in inducing this antiviral response. This analysis of eIF2alpha phosphorylation, coupled with earlier findings that the eIF4F complex is modified earlier during VSV infection, supports a temporal/kinetic model of translation control, where at times soon after infection, changes in the eIF4F complex result in the inhibition of host protein synthesis; at later times, inactivation of the eIF2 complex blocks VSV protein synthesis.  相似文献   

11.
RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection.  相似文献   

12.
In vitro antiviral activity of 11 different drugs against the viruses of infectious bovine rhionotracheitis (IBR) and bovine viral diarrhea (BVD) was studied. The ID50 of the drugs were determined in monolayers of cell cultures MDBK and KCT: 20 mcg/ml for anandin, 25 mcg/ml for polyprenole, 50 mcg/ml for bromuridin, methisazone, aciclovir, gossypole, ribavirin and liposomal ribavirin, 100 mcg/ml for eracond, and 200 mcg/ml for phosprenil and argovit. Phosprenil was the only drug that showed virucidal activity against the IBR virus. All the drugs inhibited reproduction of the IBR virus in sensitive cell culture MDBK: 100,000-fold inhibition by bromuridin, aciclovir, ribavirin and methisazone, 1000-10000-fold inhibition by liposomal ribavirin, gossypole, anandin, polyprenole and phosprenil, 100-fold inhibition by eracond and argovit. As for the BVD virus, bromuridin, phosprenil, polyprenole, methisazone, aciclovir, gossypole, argovit, ribavirin and liposomal ribavirin also showed their activity in cell culture KCT (100-10,000-fold inhibition). The other drugs were ineffective.  相似文献   

13.
Interferon does not inactivate viruses or viral RNA. Virus growth is inhibited in interferon-treated cells, but apart from conferring resistance to virus growth, no other effect of interferon on cells has been definitely shown to take place. Interferon binds to cells even in the cold, but a period of incubation at 37°C is required for development of antiviral activity. Cytoplasmic uptake of interferon has not been unequivocally demonstrated. Studies with antimetabolites indicate that the antiviral action of interferon requires host RNA and protein synthesis. Experiments with 2-mercapto-1(β-4-pyridethyl) benzimidazole (MPB) suggest that an additional step is required between the binding and the synthesis of macromolecules. Interferon does not affect the adsorption, penetration, or uncoating of RNA or DNA viruses, but viral RNA synthesis is inhibited in cells infected with RNA viruses. The main action of interferon appears to be the inhibition of the translation of virus genetic information probably by inhibiting the initiation of virus protein synthesis.  相似文献   

14.
The infectious salmon anemia virus (ISAV), which belongs to the Orthomyxoviridae family, has been responsible for major losses in the salmon industry, with mortalities close to 100% in areas where Atlantic salmon (Salmo salar) is grown. This work studied the effect of ribavirin (1-β-d-ribofuranosyl-1,2,3-triazole-3-carbaxaide), a broad-spectrum antiviral compound with proven ability to inhibit the replicative cycle of the DNA and RNA viruses. The results show that ribavirin was able to inhibit the infectivity of ISAV in in vitro assays. In these assays, a significant inhibition of the replicative viral cycle was observed with a 50% inhibitory concentration (IC50) of 0.02 μg/ml and an IC90 of 0.4 μg/ml of ribavirin. After ribavirin treatment, viral proteins were not detectable and a reduction of viral mRNA association with ribosomes was observed. Ribavirin does not affect the levels of EF1a, nor its association with polysomes, suggesting that the inhibition of RNA synthesis occurs specifically for the virus mRNAs and not for cellular mRNAs. Moreover, ribavirin caused a significant reduction in genomic and viral RNA messenger levels. The study of the inhibitory mechanism showed that it was not reversed by the addition of guanosine. Furthermore, in vivo assays showed a reduction in the mortality of Salmo salar by more than 90% in fish infected with ISAV and treated with ribavirin without adverse effects. In fact, these results show that ribavirin is an antiviral that could be used to prevent ISAV replication either in vitro or in vivo.  相似文献   

15.
Adenovirus DNA replication is inhibited by aphidicolin but the inhibition clearly has different parameters than the inhibition of purified DNA polymerase alpha. In adenovirus infected Hela cells, 10 micrograms/ml of aphidicolin reduced viral DNA synthesis by 80%. Cellular DNA synthesis was inhibited by 97% at 0.1 microgram/ml. 10 micrograms/ml of drug had no effect on virus yield or late protein synthesis though higher concentrations of drug (50 micrograms/ml) caused an abrupt cessation of late protein synthesis and 100 micrograms/ml reduced virus yield by 3 logs. Concentrations of the drug from 0.5 microgram/ml to 10 micrograms/ml were found to dramatically slow the rate of DNA chain elongation in vitro but not stop it completely, so that over a long period of time net incorporation was reduced only slightly compared to the control. 50 micrograms/ml or 100 micrograms/ml of drug completely inhibited incorporation in vitro. Initiation of viral DNA replication - covalent attachment of dCMP to the preterminal protein - occurs in vitro. This reaction was found to be insensitive to inhibition by aphidicolin. We thus conclude that aphidicolin exerts its effect on adenovirus DNA chain elongation, but not on the primary initiation event of protein priming.  相似文献   

16.
Many individuals infected with hepatitis C virus (HCV) develop a chronic infection, and of those who are treated with pegylated interferon and ribavirin (RBV), many do not respond. While the nucleoside analog RBV improves treatment outcome, and will likely be an important component of therapy with next-generation viral inhibitors, RBV's mechanism is controversial. Most of RBV's proposed mechanisms require RBV import into cells. Therefore, we explored whether host-based RBV resistance develops through reduced cellular uptake, akin to chemotherapy resistance in some cancers. We examined the effect of host-based RBV resistance on HCV replication in cultured hepatoma Huh7.5 liver cells and whether RBV resistance develops in HCV patients. When Huh7.5 cells were exposed to RBV, resistance developed through reduced RBV uptake via the ENT1 nucleoside transporter and antiviral efficacy was reduced. The uptake defect in RBV-resistant cells was specific to RBV, since transport of another ENT1 substrate, cytidine, was unaffected. Importantly, RBV uptake significantly declined in HCV patient peripheral blood mononuclear cells (PBMCs) following 4 weeks of therapy. Furthermore, maintenance of RBV uptake correlated with rapid treatment response. Our results uncovered a novel form of antiviral drug resistance and suggest that host-based RBV resistance develops in HCV patients undergoing therapy and that maintenance of RBV uptake may contribute to rapid viral clearance.  相似文献   

17.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host innate and adaptive antiviral immunity against hepatitis B virus (HBV) infection in vivo. In an effort to elucidate the antiviral mechanism of these cytokines, 37 IFN-stimulated genes (ISGs), which are highly inducible in hepatocytes, were tested for their ability to inhibit HBV replication upon overexpression in human hepatoma cells. One ISG candidate, indoleamine 2,3-dioxygenase (IDO), an IFN-γ-induced enzyme catalyzing tryptophan degradation, efficiently reduced the level of intracellular HBV DNA without altering the steady-state level of viral RNA. Furthermore, expression of an enzymatically inactive IDO mutant did not inhibit HBV replication, and tryptophan supplementation in culture completely restored HBV replication in IDO-expressing cells, indicating that the antiviral effect elicited by IDO is mediated by tryptophan deprivation. Interestingly, IDO-mediated tryptophan deprivation preferentially inhibited viral protein translation and genome replication but did not significantly alter global cellular protein synthesis. Finally, tryptophan supplementation was able to completely restore HBV replication in IFN-γ- but not IFN-α-treated cells, which strongly argues that IDO is the primary mediator of IFN-γ-elicited antiviral response against HBV in human hepatocyte-derived cells.  相似文献   

18.
In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV).  相似文献   

19.
Chang KO  George DW 《Journal of virology》2007,81(22):12111-12118
The development of effective therapies for noroviral gastroenteritis has been hampered by the absence of a cell culture system. Recently, we reported the generation of Norwalk virus (NV) replicon-bearing cells in BHK21 and Huh-7 cells and demonstrated that alpha interferon (IFN-alpha) effectively inhibited the replication of NV in these cells. In continuing studies for screening potential antinoroviral agents, we tested IFN-gamma and ribavirin for their effects on NV replication in the cells. Like IFN-alpha, IFN-gamma inhibited the replication of NV in the replicon-bearing cells, showing the reduction of the NV genome and proteins in a dose-dependent manner. The effective dose for reducing 50% (ED(50)) of the NV genome and protein was calculated to be approximately 40 units/ml. When ribavirin was applied to the cells, it effectively reduced the NV genome and protein with the ED(50) calculated as approximately 40 microM. The combination of IFN-alpha and ribavirin showed additive effects on the inhibition of NV replication. With the addition of guanosine to the ribavirin treatment, moderately reversed antiviral effects were observed, suggesting that the ribavirin effect may be associated with the depletion of GTP in the cells. Sequencing analysis of the conserved polymerase regions of NV in the ribavirin-treated (100 microM) and nontreated groups showed that the mutation rates were similar and indicated that ribavirin did not induce catastrophic mutations. The NV replicon-bearing cells provide an excellent tool for screening potential antinoroviral agents, and our results indicated that IFNs and ribavirin may be good therapeutic options for noroviral gastroenteritis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号