首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The biochemical and physiological aspects of hexuronate transport in Erwinia carotovora were studied to approach the genetic regulation of the hexuronate degradative pathway in this bacterial species. An active transport system for glucuronate and galacturonate uptake exists in E. carotovora. The glucuronate entry reaction displayed saturation kinetics with an apparent Km of 0.05 mM (at 25 degrees C; pH 7). Galacturonate appeared to be a competitive inhibitor of glucuronate uptake with a Ki of 0.1 mM. Glucuronate permeation was not induced by glucuronate itself in wild-type strains. Galacturonate induced the uptake of glucuronate (about fivefold). The induced synthesis of the transport system was sensitive to catabolite repression by glucose. Mutants able to grow on glucuronate as the sole carbon source showed constitutive synthesis of the hexuronate transport system.  相似文献   

2.
Biosorption of copper by Pseudomonas cepacia was found to be dependent on added copper concentration. Copper uptake by the cells was rapid over the range of copper concentrations tested and complete within the first 10 min of incubation time. The effect of pH on copper uptake by P. cepacia was determined using overlapping buffers over the pH range 3–8, and copper biosorption from a 10 mM copper solution was greatest at pH 7. Copper uptake (measured by analysis of cell digests) was unaffected by cyanide and azide (up to 30 mM) and by incubation of cells with a 10 mM copper solution at 4 °C. Evidence from these results suggested that copper uptake by P. cepacia cells involves surface binding and not intracellular accumulation by active transport. Biosorption of copper by various Pseudomonas isolates from metal-contaminated environments agreed well with copper biosorption by Pseudomonas strains from the National Collection of Type Cultures (NCTC).  相似文献   

3.
The marine coccolithophore Emiliania huxleyi (Haptophyta) requires selenium as an essential element for growth, and the active species absorbed is selenite, not selenate. This study characterized the selenite uptake mechanism using ??Se as a tracer. Kinetic analysis of selenite uptake showed the involvement of both active and passive transport processes. The active transport was suppressed by 0.5 mM vanadate, a membrane-permeable inhibitor of H?-ATPase, at pH 8.3. When the pH was lowered from 8.3 to 5.3, the selenite uptake activity greatly increased, even in the presence of vanadate, suggesting that the H? concentration gradient may be a motive force for selenite transport. [??Se]Selenite uptake at selenite-limiting concentrations was hardly affected by selenate, sulfate and sulfite, even at 100 μM. In contrast, 3 μM orthophosphate increased the K(m) 5-fold. These data showed that HSeO??, a dominant selenite species at acidic pH, is the active species for transport through the plasma membrane and transport is driven by ΔpH energized by H?-ATPase. Kinetic analysis showed that the selenite uptake activity was competitively inhibited by orthophosphate. Furthermore, the active selenite transport mechanism was shown to be induced de novo under Se-deficient conditions and induction was suppressed by the addition of either sufficient selenite or cycloheximide, an inhibitor of de novo protein synthesis. These results indicate that E. huxleyi cells developed an active selenite uptake mechanism to overcome the disadvantages of Se limitation in ecosystems, maintaining selenium metabolism and selenoproteins for high viability.  相似文献   

4.
In elasmobranch fishes, urea occurs at high concentrations (350-600 mM) in the body fluids and tissues, where it plays an important role in osmoregulation. Retention of urea by the gill against this huge blood-to-water diffusion gradient requires specialized adaptations to the epithelial cell membranes. Experiments were performed to determine the mechanisms and structural features that facilitate urea retention by the gill of the spiny dogfish Squalus acanthias. Analysis of urea uptake by gill basolateral membrane vesicles revealed the presence of a phloretin-sensitive (half inhibition 0.09 mM), sodium-coupled, secondary active urea transporter (Michaelis constant = 10.1 mM, maximal velocity = 0.34 micromol. h(-1). mg protein(-1)). We propose that this system actively transports urea out of the gill epithelial cells back into the blood against the urea concentration gradient. Lipid analyses of the basolateral membrane revealed high levels of cholesterol contributing to the highest reported cholesterol-to-phospholipid molar ratio (3.68). This unique combination of active urea transport and modification of the phospholipid bilayer membrane is responsible for decreasing the gill permeability to urea and facilitating urea retention by the gill of Squalus acanthias.  相似文献   

5.
Urea transport in Saccharomyces cerevisiae.   总被引:20,自引:12,他引:8       下载免费PDF全文
Urea transport in Saccharomyces cerevisiae occurs by two pathways. The first mode of uptake is via an active transport system which: (i) has an apparent Km value of 14 muM, (ii) is absolutely dependent upon energy metabolism, (iii) requires pre-growth of the cultures in the presence of oxaluric acid, gratuitous inducer of the allantoin degradative enzymes, and (iv) is sensitive to nitrogen repression. The second mode of uptake which occurs at external urea concentrations in excess of 0.5 mM is via either passive or facilitated diffusion.  相似文献   

6.
Thiomethyl-beta-galactoside (TMG) accumulation via the melibiose transport system was studied in lactose transport-negative strains of Escherichia coli. TMG uptake by either intact cells or membrane vesicles was markedly stimulated by Na+ or Li+ between pH 5.5 and 8. The Km for uptake of TMG was approximately 0.2 mM at an external Na+ concentration of 5 mM (pH 7). The alpha-galactosides, melibiose, methyl-alpha-galactoside, and o-nitrophenyl-alpha-galactoside had a high affinity for this system whereas lactose, maltose and glucose had none. Evidence is presented for Li+-TMG or Na+-TMG cotransport.  相似文献   

7.
Lysosomes constitute only 4% of the intracellular volume of a normal human fibroblast. When human fibroblasts are incubated for 2-5 min with 20 microM [35S]cystine in Krebs-Ringer phosphate solution at pH 7.4, a minimum of 50-60% of the total radioactivity taken up by the cells is found sequestered into the lysosomal compartment in the form of cysteine. A lysosomal transport system, highly specific for cysteine, appears to facilitate this rapid lysosomal cysteine sequestration. Time courses of [35S]cysteine uptake into isolated, Percoll-purified fibroblast lysosomes at pH 7.0 and 37 degrees C are linear for the first 4-5 min and attain a steady state by 10 min. Lysosomal cysteine uptake displays a Km of 0.05 mM at pH 7.0 and an activation energy of 21 kcal/mol, corresponding to a Q10 of 3.2. The role of this transport system in delivering cysteine into lysosomes is supported by its pH curve showing a slow rate of cysteine transport at the acidic pHs between 5 and 6, but then increasing sevenfold between pH 6 and 7.5 to be maximally active near the cytosolic pH of 7. Carrier mediation by this lysosomal transport route demonstrates a high specificity for cysteine as indicated by the inability of the following amino acids to significantly inhibit at 5 mM the lysosomal uptake of 0.035 mM [35S]L-cysteine: ala, ser, pro, val, gly, homocysteine, D- or L-penicillamine, arg, asp, or leu. Similarly, D-cysteine and beta-mercaptopropionate were poor inhibitors, suggesting that both the L-isomer and alpha-amino group of cysteine appear to be required for recognition by the cysteine-specific transport system. In contrast, cysteamine, which lacks an alpha-carboxyl group, was able to strongly inhibit lysosomal cysteine uptake. The physiological importance of this cysteine-specific lysosomal transport system may be to aid lysosomal proteolysis by delivering cysteine into the lysosomal compartment to (a) maintain the catalytic activity of the thiol-dependent lysosomal enzymes and (b) break protein disulfide bridges at susceptible linkages, thereby allowing proteins to unfold, facilitating their degradation.  相似文献   

8.
1. The uptake of monosaccharides and polyols in the obligatory aerobic yeast Rhodotorula gracilis (glutinis) was accompanied by proton uptake. 2. The half-saturation constant of transport, KT, depended on pH, changing from about 2mM at pH 4.5 to 80mM at pH8.5 for D-xylose; this change of the effective carrier affinity was reversible. 3. The apparent dissociation constant of the monosaccharide carrier was estimated at pKa 6.75. 4. At pH8.5, when the pH gradient across the cell membrane vanished, no sugar accumulation was demonstrable. 5. The half-saturation constants of sugar uptake and H+ co-transport were very similar to each other, the latter obviously being controlled by the former. 6. The H+/sugar stoicheiometry remained constant under various physiological conditions; it amounted to one H+ ion per sugar molecule taken up. 7. The data are interpreted as a strong piece of evidence in favour of the active monosaccharide transport in R. gracilis (glutinis) being an H+-symport energized by the electrochemical gradient of H+ across the plasma membrane of the yeast.  相似文献   

9.
Monolayers of the Caco-2 human intestinal cell line exhibit active and passive uptake systems for the imino acid L-proline. The active transport component is saturable and it is responsible for about two thirds of the observed flux over the nanomolar concentration range, at 37 degrees C and pH 7.4. In contrast to L-phenylalanine, specific L-proline uptake has a high degree of sodium dependency and the efficiency of the carrier system is significantly reduced when protein synthesis (cycloheximide), Na+/K(+)-ATPase (ouabain) or cellular metabolism (sodium azide) are inhibited. The expression of the L-proline carrier by Caco-2 cells was under some degree of nutritional control. Glucose deficiency, over the time scale of the experiment, had no effect. The temperature-dependence of the specific uptake process followed the Arrhenius model with an apparent activation energy of 93.5 kJ nmol-1. This pathway also displayed Michaelis-Menten concentration-dependence with a Ksdm of 5.28 mM and a maximal transport flux (Jsdmax) of 835 pmol min-1 (10(6) cells)-1. Although the passive component was unchanged, the pH of the donor phase exerted a profound effect on the active carrier component. Within the physiological pH range a local maximum efficiency was found at pH 7.4 but dramatic increases were noted as pH 5.0 was approached. In competition studies, with 100-fold excess of a second amino acid, strong inhibition of uptake was found with alpha-aminoisobutyric acid, L-alanine and L-serine whereas moderate inhibition was observed with glycine, D-proline and gamma-aminoisobutyric acid. Aromatic and branched amino acids showed weak (L-valine) or no interaction (L-phenylalanine, L-leucine) with the carrier system. These data indicate that the carrier system for the uptake of L-proline has many features in common with the A system for amino acid transport.  相似文献   

10.
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism.  相似文献   

11.
The energy-dependent urea permease was studied in two strains ofPseudomonas aeruginosa, measuring the uptake (transport and metabolism) of14C-urea. In both strains urea uptakein vivo and urease activityin vitro differed significantly with respect to kinetic parameters, temperature and pH dependence and response to metabolic inhibitors. Ammonium strongly interfered both with the expression of the urea uptake system and its activity. The inhibition of the uptake activity by ammonium was partially relieved by hydraziniumsulfate, which prevented the translocation of ammonium into the cell, and in a methylammonium/ammonium transport-defective mutant of strain DSM 50071. Furthermore, methionine-sulfoximine, which prevented the intracellular glutamine formation from ammoniumvia inhibition of glutamine synthetase, relieved the inhibition of urea uptake by ammonium. These findings suggested that urea uptake activity inP. aeruginosa is regulated by intracellular glutamine.Abbreviations CCCP carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide - GS glutamine synthetase - MSX methionine-sulfoximine  相似文献   

12.
The plasma membrane of Chang liver cells was shown to have at least two distinct active transport systems, one with preferential affinity for glycine and one for leucine. The uptakes of glycine and leucine were specificially inhibited by Me-AIB and b-BCH, respectively. The uptake of glycine decreased remarkably within 10 min on incubation with DNP (2 mM), KCN (5 mM), and malonate (20 mM) under aerobic conditions, along with a decrease of cellular ATP concentration to as low as 1/4 of normal, while the uptake of leucine was not depressed under these conditions. Leucine uptake was, however, greatly reduced within 10 min on incubation with DNP plus ICH2CONH2 (5 mM), when the cellular ATP was estimated at about 0.066 mM. The active transport of leucine, but not that of glycine, was accompanied by further acidification of the intracellular fluid, which was lower in pH than the extracellular fluid by approximately 0.3 unit without addition of amino acid to the medium.  相似文献   

13.
Sugar uptake into brush border vesicles from dog kidney. II. Kinetics   总被引:1,自引:0,他引:1  
The kinetics of D-glucose transport over the concentration range 0.07--20 mM have been investigated in a vesiculated membrane preparation from dog kidney cortex. 1. A sodium-dependent and a sodium-independent component of D-glucose uptake are observed. The sodium-dependent component is phlorizin sensitive (KI approximately 0.6 micron) and electrogenic. 2. The sodium-dependent component of D-glucose uptake yields non-linear Eadie-Hofstee plots consistent with the presence of high (GH) and low (GL) affinity sites (KH approximately 0.2 mM, KL approximately 4.5 mM, VL/VH approximately 7 at pH 7.4, 25 degrees C, 100 mM NaC1 gradient). Alternative explanations are cooperative effects of non-Michaelis-Menten kinetics. 3. The initial uptake of D-glucose increases as the intravesicular membrane potential become more negative but the numerical values of KH and KL show little, if any, change. 4. alpha-Methyl-D-glucoside transport is also sodium dependent and phlorizin sensitive (KI approximately 1.9 micron). 5. In contrast to the results for D-glucose, the sodium-dependent component of alpha-methyl-D-glucoside uptake exhibits a nearly linear Eadie-Hofstee plot consistent with a single carrier site with Km approximately 1.9 mM and Vmax approximately 27 nmol/min per mg protein at pH 7.4, 25 degrees C, 100 mM NaCl gradient. 6. The kinetics of D-glucose transport in newborn dog kidney are similar to those in the adult except that the low affinity (GL) system appears to be less well developed.  相似文献   

14.
ASCT1 protein is a member of the glutamate transporter superfamily, which shows system ASC selectivity and properties and has been characterized as a Na+-dependent neutral amino-acid exchanger. Here, by using ASCT1-expressing oocytes, the uptake of alanine and glutamate was measured to investigate ASCT1's ability to mediate a concentrative transport of alanine, ASCT1's sodium dependence, and the influence of pH on the mutual inhibition between alanine and glutamate. Alanine uptake was measured after 30 min incubation. Kinetic analysis of the Na+ dependence of alanine uptake showed an apparent K0.5 (affinity constant) value for Na+ of 23.1 +/- 4.3 mM (mean +/- SE). Concentration dependence of alanine uptake was tested at 100 and 1 mM Na+, with apparent K0.5 values of 0.16 +/- 0.04 and 1.8 +/- 0.4 mM, respectively, at pH 7.5, and 0.21 +/- 0.06 and 1.9 +/- 0.3 mM at pH 6. Vmax was not modified between 100 and 1 mM Na+ at either pH. ASCT1 actively transports alanine and accumulates it in the cytosol even when the Na+ concentration in the medium was as low as 1-3 mM. 22Na uptake studies revealed that Na+ transport was stimulated by the presence of alanine in the medium. Our results demonstrate that ASCT1 is able to mediate a concentrative transport of alanine, which is Na+-dependent but not coupled to the Na+ gradient.  相似文献   

15.
We have examined lactate uptake (as the rate of net muscle lactate accumulation) and unidirectional inward transport (measured by a paired-tracer dilution method) in muscle of the perfused skinned rat hindlimb. Inhibition of tracer influx (fractional uptake at 1 mM L(+)-lactate, 43.3 +/- 3.1% but only 32.9 +/- 1.8% at 50 mM lactate) suggested some competition between tracer and native forms of the carboxylate for transport. D(-)-lactate (50 mM) did not inhibit uptake of tracer L(+)-lactate. Pyruvate (25 mM), but none of five other monocarboxylates, inhibited uptake of tracer lactate, by 22% (P less than 0.01). Altering perfusate pH from 7.4 to 6.8 caused a 36% increase (P less than 0.001) in the unidirectional L(+)-lactate transport at 1 mM L(+)-lactate, whereas increasing pH to 7.7 reduced transport by 18% (P less than 0.01). Tracer lactate influx was inhibited by 500 microM 4-acetamido-4'-isothiocyanostilbene (SITS) (19%), 5 mM alpha-cyano-4-hydroxycinnamic acid (CIN) (20-30%), 1 mM amiloride (27%) and by a thiol group reagent p-chloromercuribenzenesulphonic acid (pCMBS) (26%). Overall the results indicate that at least two processes are involved in the transfer of lactate: one, saturable, with a Vmax of 0.84 mumol.min-1.g-1 and an apparent Km of 21 mM was sensitive to SITS, CIN, and a thiol group reagent; the other was non-saturable and insensitive to SITS and CIN with an apparent rate constant of 0.1 min-1.  相似文献   

16.
Dinitrophenyl S-glutathione is accumulated by inside-out vesicles made from human erythrocytes in a process totally dependent on ATP and Mg2+. The vesicles were shown to accumulate dinitrophenyl S-glutathione against a concentration gradient. The vesicles were able to concentrate this glutathione derivative even in the absence of membrane potential. This indicated that the ATP-dependent uptake of dinitrophenyl S-glutathione by inside-out vesicles represented an active transport process. Neither extravesicular EGTA nor intravesicular ouabain inhibited the transport process, indicating that neither the Ca2+-ATPase nor the Na+, K+-ATPase were involved. These results indicated that dinitrophenyl S-glutathione uptake by inside-out vesicles probably represented primary active transport. The uptake of dinitrophenyl S-glutathione was a linear function of time (up to 5 h) and vesicle protein. The rate of uptake was optimal between pH 7.0 and 8.0 and at 37 degrees C. The Km values determined for dinitrophenyl S-glutathione and ATP were 0.29 mM and 1 mM, respectively. The transport process was completely inhibited by vanadate and by p-hydroxymercuribenzene sulphonate and inhibited to a lesser extent by N-ethylmaleimide. GTP could efficiently substitute for ATP as an energy source for the transport process, but CTP and UTP were comparatively much less effective.  相似文献   

17.
Lead transport at the blood-brain barrier has been studied by short (less than 1.5 min) vascular perfusion of one cerebral hemisphere of the rat with a buffered physiological salt solution at pH 7.4 without calcium, magnesium, or bicarbonate and containing 203 Pb-labelled lead chloride. In the absence of complexing agents, 203Pb uptake was rapid, giving a space of 9.7 ml/100 g of wet frontal cortex at 1 min. Lead-203 influx was linear with lead concentration up to 4 microM. Five percent albumin, 200 microM cysteine, or 1 mM EDTA almost abolished 203Pb uptake. Lead-203 entry into brain was uninfluenced by varying the calcium concentration or by magnesium or the calcium blocker methoxyverapamil. Similarly, 1 mM bicarbonate or 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid was without effect. Increasing the potassium concentration reduced 203Pb uptake. Vanadate at 2 mM, 2 microM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (a metabolic uncoupler), or 2 microM stannic chloride all markedly enhanced lead entry into brain, as did a more alkaline pH (7.80). In conclusion, there is a mechanism allowing rapid passive transport of 203Pb at the brain endothelium, perhaps as PbOH+. Lead uptake into brain via this system is probably made less important by active transport of lead back into the capillary lumen by the calcium-ATP-dependent pump.  相似文献   

18.
The N-acetylneuraminic acid (NeuAc) transport system of Pasteurella (Mannheimia) haemolytica A2 was studied when this bacterium was grown in both complex and chemically defined media. Kinetic measurements were carried out at 37 degrees C in 50 mM Tris-HCl buffer, pH 8.0, containing 50 microg/ml bovine serum albumin. Under these conditions, the uptake rate was linear for at least 3 min and the calculated K(m) for NeuAc was 0.1 microM. The transport rate was increased by the addition of several cations and was inhibited by sodium arsenite (95%), N,N'-dicyclohexyl-carbodiimide (50%), and 2,4-dinitrophenol (40%) at final concentration of 1 mM (each). These results support the notion that NeuAc uptake is an active sugar cation symporter. Study of specificities showed that glucosamine, mannose and mannosamine inhibited the transport of NeuAc in this bacterium. Analysis of expression revealed that the NeuAc transport system was induced by NeuAc and by the simultaneous presence of glucose and galactose in the growth medium.  相似文献   

19.
Urea is the major nitrogen form supplied as fertilizer in agricultural plant production but also an important nitrogen metabolite in plants. We report the cloning and functional characterization of AtDUR3, a high-affinity urea transporter in plants. AtDUR3 contains 14 putative transmembrane-spanning domains and represents an individual member in Arabidopsis that belongs to a superfamily of sodium-solute symporters. Heterologous expression in urea uptake-defective yeast as well as two-electrode voltage clamp and uptake studies using (14)C-labeled urea in AtDUR3-expressing oocytes demonstrated that AtDUR3 mediates urea transport. In both heterologous systems, urea transport was stimulated at low pH. In oocytes, inward currents indicated that urea is cotransported with protons. By contrast, a supply of Na(+) ions could not stimulate urea transport. Transport of (14)C-labeled urea by AtDUR3 in oocytes exhibited saturation kinetics with a K(m) of approximately 3 micro M. AtDUR3 was expressed in shoots and roots and upregulated during early germination and under nitrogen deficiency in roots. We propose a role of AtDUR3 in urea uptake by plant cells at low external urea concentrations.  相似文献   

20.
Uptake of amino acids and peptides by developing barley embryos   总被引:1,自引:0,他引:1  
Developing embryos of barley ( Hordeum vulgare L. cv. Bomi) detached 21–27 days after anthesis took up 1 mM [14C]-glutamine at pH 5 and 30°C at a rate of about 20 nmol embryo−l h−1 (5 μol g−1h−1). The uptake was inhibited by about 50% by di-nitrophenol and by about 80% by 300 m M unlabelled glutamine or alanine. The bulk of the uptake appeared, therefore, to be due to carrier-mediated active transport. The pH optimum of the uptake was 4.5. Leucine, proline, lysine, arginine and as-paragine were taken up at approximately similar rates as glutamine, and they also inhibited the uptake of glutamine. This, suggests that the uptake of glutamine was at least partly due to an unspecific carrier(s) also shared by other amino acids. The embryos also took up the dipepti.de glycykarcosine; the rate was about 6 nmol embryo−1h−1 (1.5 μol g−1h−1) (2 mM glycylsarcosine, pH 4.5, 30°C). The uptake was inhibited by about 70% by dinitrophenol or by 300 m M glycylglycine. This indicates that the bulk of the uptake was due to carrier-mediated active transport. The pH optimum of the uptake was about 4.5.
The rates of glutamine and glycylsarcosine uptake increased during the early and middle stages of embryo development (until day 28 after anthesis), but decreased towards the end of the maturation of the grain. These changes, as well as the relatively high activities, suggest that carrier-mediated active uptake of amino acids, and possibly also that of peptides, plays a role in the nutrition of the developing embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号