首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Fine-grained influenza surveillance data are lacking in the US, hampering our ability to monitor disease spread at a local scale. Here we evaluate the performances of high-volume electronic medical claims data to assess local and regional influenza activity.

Material and Methods

We used electronic medical claims data compiled by IMS Health in 480 US locations to create weekly regional influenza-like-illness (ILI) time series during 2003–2010. IMS Health captured 62% of US outpatient visits in 2009. We studied the performances of IMS-ILI indicators against reference influenza surveillance datasets, including CDC-ILI outpatient and laboratory-confirmed influenza data. We estimated correlation in weekly incidences, peak timing and seasonal intensity across datasets, stratified by 10 regions and four age groups (<5, 5–29, 30–59, and 60+ years). To test IMS-Health performances at the city level, we compared IMS-ILI indicators to syndromic surveillance data for New York City. We also used control data on laboratory-confirmed Respiratory Syncytial Virus (RSV) activity to test the specificity of IMS-ILI for influenza surveillance.

Results

Regional IMS-ILI indicators were highly synchronous with CDC''s reference influenza surveillance data (Pearson correlation coefficients rho≥0.89; range across regions, 0.80–0.97, P<0.001). Seasonal intensity estimates were weakly correlated across datasets in all age data (rho≤0.52), moderately correlated among adults (rho≥0.64) and uncorrelated among school-age children. IMS-ILI indicators were more correlated with reference influenza data than control RSV indicators (rho = 0.93 with influenza v. rho = 0.33 with RSV, P<0.05). City-level IMS-ILI indicators were highly consistent with reference syndromic data (rho≥0.86).

Conclusion

Medical claims-based ILI indicators accurately capture weekly fluctuations in influenza activity in all US regions during inter-pandemic and pandemic seasons, and can be broken down by age groups and fine geographical areas. Medical claims data provide more reliable and fine-grained indicators of influenza activity than other high-volume electronic algorithms and should be used to augment existing influenza surveillance systems.  相似文献   

2.
In the United States, influenza season typically begins in October or November, peaks in February, and tapers off in April. During the winter holiday break, from the end of December to the beginning of January, changes in social mixing patterns, healthcare-seeking behaviors, and surveillance reporting could affect influenza-like illness (ILI) rates. We compared predicted with observed weekly ILI to examine trends around the winter break period. We examined weekly rates of ILI by region in the United States from influenza season 2003–2004 to 2012–2013. We compared observed and predicted ILI rates from week 44 to week 8 of each influenza season using the auto-regressive integrated moving average (ARIMA) method. Of 1,530 region, week, and year combinations, 64 observed ILI rates were significantly higher than predicted by the model. Of these, 21 occurred during the typical winter holiday break period (weeks 51–52); 12 occurred during influenza season 2012–2013. There were 46 observed ILI rates that were significantly lower than predicted. Of these, 16 occurred after the typical holiday break during week 1, eight of which occurred during season 2012–2013. Of 90 (10 HHS regions x 9 seasons) predictions during the peak week, 78 predicted ILI rates were lower than observed. Out of 73 predictions for the post-peak week, 62 ILI rates were higher than observed. There were 53 out of 73 models that had lower peak and higher post-peak predicted ILI rates than were actually observed. While most regions had ILI rates higher than predicted during winter holiday break and lower than predicted after the break during the 2012–2013 season, overall there was not a consistent relationship between observed and predicted ILI around the winter holiday break during the other influenza seasons.  相似文献   

3.
In France, the 2011–2012 influenza epidemic was characterized by the circulation of antigenically drifted influenza A(H3N2) viruses and by an increased disease severity and mortality among the elderly, with respect to the A(H1N1)pdm09 pandemic and post-pandemic outbreaks. Whether the epidemiology of influenza in France differed between the 2011–2012 epidemic and the previous outbreaks is unclear. Here, we analyse the age distribution of influenza like illness (ILI) cases attended in general practice during the 2011–2012 epidemic, and compare it with that of the twelve previous epidemic seasons. Influenza like illness data were obtained through a nationwide surveillance system based on sentinel general practitioners. Vaccine effectiveness was also estimated. The estimated number of ILI cases attended in general practice during the 2011–2012 was lower than that of the past twelve epidemics. The age distribution was characteristic of previous A(H3N2)-dominated outbreaks: school-age children were relatively spared compared to epidemics (co-)dominated by A(H1N1) and/or B viruses (including the 2009 pandemic and post-pandemic outbreaks), while the proportion of adults over 30 year-old was higher. The estimated vaccine effectiveness (54%, 95% CI (48, 60)) was in the lower range for A(H3N2) epidemics. In conclusion, the age distribution of ILI cases attended in general practice seems to be not different between the A(H3N2) pre-pandemic and post-pandemic epidemics. Future researches including a more important number of ILI epidemics and confirmed virological data of influenza and other respiratory pathogens are necessary to confirm these results.  相似文献   

4.
5.
Infectious disease surveillance systems provide information crucial for protecting populations from influenza epidemics. However, few have reported the nationwide number of patients with influenza-like illness (ILI), detailing virological type. Using data from the infectious disease surveillance system in Japan, we estimated the weekly number of ILI cases by virological type, including pandemic influenza (A(H1)pdm09) and seasonal-type influenza (A(H3) and B) over a four-year period (week 36 of 2010 to week 18 of 2014). We used the reported number of influenza cases from nationwide sentinel surveillance and the proportions of virological types from infectious agents surveillance and estimated the number of cases and their 95% confidence intervals. For the 2010/11 season, influenza type A(H1)pdm09 was dominant: 6.48 million (6.33–6.63), followed by types A(H3): 4.05 million (3.90–4.21) and B: 2.84 million (2.71–2.97). In the 2011/12 season, seasonal influenza type A(H3) was dominant: 10.89 million (10.64–11.14), followed by type B: 5.54 million (5.32–5.75). In conclusion, close monitoring of the estimated number of ILI cases by virological type not only highlights the huge impact of previous influenza epidemics in Japan, it may also aid the prediction of future outbreaks, allowing for implementation of control and prevention measures.  相似文献   

6.
This is one of the first studies to (1) describe the out-of-hospital burden of influenza-like-illness (ILI) and clinically diagnosed flu, also for patients not seeking professional medical care, (2) assess influential background characteristics, and (3) formally compare the burden of ILI in patients with and without a clinical diagnosis of flu. A general population sample with recent ILI experience was recruited during the 2011–2012 influenza season in Belgium. Half of the 2250 respondents sought professional medical care, reported more symptoms (especially more often fever), a longer duration of illness, more use of medication (especially antibiotics) and a higher direct medical cost than patients not seeking medical care. The disease and economic burden were similar for ambulatory ILI patients, irrespective of whether they received a clinical diagnosis of flu. On average, they experienced 5–6 symptoms over a 6-day period; required 1.6 physician visits and 86–91% took medication. An average episode amounted to €51–€53 in direct medical costs, 4 days of absence from work or school and the loss of 0.005 quality-adjusted life-years. Underlying illness led to greater costs and lower quality-of-life. The costs of ILI patients with clinically diagnosed flu tended to increase, while those of ILI patients without clinically diagnosed flu tended to decrease with age. Recently vaccinated persons experienced lower costs and a higher quality-of-life, but this was only the case for patients not seeking professional medical care. This information can be used directly to evaluate the implementation of cost-effective prevention and control measures for influenza. In particular to inform the evaluation of more widespread seasonal influenza vaccination, including in children, which is currently considered by many countries.  相似文献   

7.

Background

In Kenya, detailed data on the age-specific burden of influenza and RSV are essential to inform use of limited vaccination and treatment resources.

Methods

We analyzed surveillance data from August 2009 to July 2012 for hospitalized severe acute respiratory illness (SARI) and outpatient influenza-like illness (ILI) at two health facilities in western Kenya to estimate the burden of influenza and respiratory syncytial virus (RSV). Incidence rates were estimated by dividing the number of cases with laboratory-confirmed virus infections by the mid-year population. Rates were adjusted for healthcare-seeking behavior, and to account for patients who met the SARI/ILI case definitions but were not tested.

Results

The average annual incidence of influenza-associated SARI hospitalization per 1,000 persons was 2.7 (95% CI 1.8–3.9) among children <5 years and 0.3 (95% CI 0.2–0.4) among persons ≥5 years; for RSV-associated SARI hospitalization, it was 5.2 (95% CI 4.0–6.8) among children <5 years and 0.1 (95% CI 0.0–0.2) among persons ≥5 years. The incidence of influenza-associated medically-attended ILI per 1,000 was 24.0 (95% CI 16.6–34.7) among children <5 years and 3.8 (95% CI 2.6–5.7) among persons ≥5 years. The incidence of RSV-associated medically-attended ILI was 24.6 (95% CI 17.0–35.4) among children <5 years and 0.8 (95% CI 0.3–1.9) among persons ≥5 years.

Conclusions

Influenza and RSV both exact an important burden in children. This highlights the possible value of influenza vaccines, and future RSV vaccines, for Kenyan children.  相似文献   

8.
9.

Background

School-located influenza vaccination (SLIV) programs can substantially enhance the sub-optimal coverage achieved under existing delivery strategies. Randomized SLIV trials have shown these programs reduce laboratory-confirmed influenza among both vaccinated and unvaccinated children. This work explores the effectiveness of a SLIV program in reducing the community risk of influenza and influenza-like illness (ILI) associated emergency care visits.

Methods

For the 2011/12 and 2012/13 influenza seasons, we estimated age-group specific attack rates (AR) for ILI from routine surveillance and census data. Age-group specific SLIV program effectiveness was estimated as one minus the AR ratio for Alachua County versus two comparison regions: the 12 county region surrounding Alachua County, and all non-Alachua counties in Florida.

Results

Vaccination of ∼50% of 5–17 year-olds in Alachua reduced their risk of ILI-associated visits, compared to the rest of Florida, by 79% (95% confidence interval: 70, 85) in 2011/12 and 71% (63, 77) in 2012/13. The greatest indirect effectiveness was observed among 0–4 year-olds, reducing AR by 89% (84, 93) in 2011/12 and 84% (79, 88) in 2012/13. Among all non-school age residents, the estimated indirect effectiveness was 60% (54, 65) and 36% (31, 41) for 2011/12 and 2012/13. The overall effectiveness among all age-groups was 65% (61, 70) and 46% (42, 50) for 2011/12 and 2012/13.

Conclusion

Wider implementation of SLIV programs can significantly reduce the influenza-associated public health burden in communities.  相似文献   

10.

Background

In this prospective study we sought to examine seroepidemiological evidence for acute zoonotic influenza virus infection among Romanian agricultural workers.

Methods

Sera were drawn upon enrollment (2009) and again at 12 and 24 months from 312 adult agriculture workers and 51 age-group matched controls. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members meeting ILI criteria permitted respiratory swab collections as well as acute and convalescent serum collection. Serologic assays were performed against 9 avian, 3 swine, and 3 human influenza viruses.

Results

During the two-year follow-up, a total of 23 ILI events were reported. Two subjects'' specimens were identified as influenza A by rRT-PCR. During the follow-up period, three individuals experienced elevated microneutralization antibody titers ≥1∶80 against three (one each) avian influenza viruses: A/Teal/Hong Kong/w312/97(H6N1), A/Hong Kong/1073/1999(H9N2), or A/Duck/Alberta/60/1976(H12N5). However, none of these participants met the criteria for poultry exposure. A number of subjects demonstrated four-fold increases over time in hemagglutination inhibition (HI) assay titers for at least one of the three swine influenza viruses (SIVs); however, it seems likely that two of these three responses were due to cross-reacting antibody against human influenza. Only elevated antibody titers against A/Swine/Flanders/1/1998(H3N2) lacked evidence for such confounding. In examining risk factors for elevated antibody against this SIV with multiple logistic regression, swine exposure (adjusted OR = 1.8, 95% CI 1.1–2.8) and tobacco use (adjusted OR = 1.8; 95% CI 1.1–2.9) were important predictors.

Conclusions

While Romania has recently experienced multiple incursions of highly pathogenic avian influenza among domestic poultry, this cohort of Romanian agriculture workers had sparse evidence of avian influenza virus infections. In contrast, there was evidence, especially among the swine exposed participants, of infections with human and one swine H3N2 influenza virus.  相似文献   

11.

Background

There is a lack of recent studies examining recording of influenza-like illness (ILI) in primary care in the UK over time and according to population characteristics. Our aim was to determine time trends and socio-demographic patterns of ILI recorded consultations in primary care.

Methods

We used The Health Improvement Network (THIN) UK primary care database and extracted data on all ILI consultations between 1995 and 2013. We estimated ILI recorded consultation rates per 100,000 person-weeks (pw) by age, gender, deprivation and winter season. Negative binomial regression models were used to examine time trends and the effect of socio-demographic characteristics. Trends in ILI recorded consultations were compared to trends in consultations with less specific symptoms (cough or fever) recorded.

Results

The study involved 7,682,908 individuals in 542 general practices. The ILI consultation rate decreased from 32.5/100,000 pw (95% confidence interval (CI) 32.1, 32.9) in 1995–98 to 15.5/100,000 pw (95% CI 15.4, 15.7) by 2010–13. The decrease occurred prior to 2002/3, and rates have remained largely stable since then. Declines were evident in all age groups. In comparison, cough or fever consultation rates increased from 169.4/100,000 pw (95% CI 168.6, 170.3) in 1995–98 to 237.7/100,000 pw (95% CI 237.2, 238.2) in 2010–13. ILI consultation rates were highest among individuals aged 15–44 years, higher in women than men, and in individuals from deprived areas.

Conclusion

There is substantial variation in ILI recorded consultations over time and by population socio-demographic characteristics, most likely reflecting changing recording behaviour by GPs. These results highlight the difficulties in using coded information from electronic primary care records to measure the severity of influenza epidemics across time and assess the relative burden of ILI in different population subgroups.  相似文献   

12.

Background

In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV) infections with H9N2 and H5N1 viruses.

Methods

After enrollment, participants were contacted weekly for 24mos for acute influenza-like illnesses (ILI). Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses.

Results

Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38%) were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14%) reported ILIs, and 11 (92%) of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2) virus: 21 subjects (2.7%) at 12-months and 40 subjects (5.1%) at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1∶80). While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04–5.2) at the 24-month encounter. One subject had an elevated titer (1∶20) against H5N1 during follow-up.

Conclusions

From 2008–10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in humans.  相似文献   

13.

Background

The effectiveness of the 2011–2012 seasonal influenza vaccine was evaluated in adult Korean populations with regard to how well it could prevent laboratory-confirmed influenza and influenza-related complications.

Materials and Methods

A retrospective case-control and retrospective cohort study was conducted among patients who visited four selected hospitals from September 2011 to May 2012. The analysis included 1,130 laboratory-confirmed influenza patients. For each influenza case, one control patient was chosen at a ratio of 1:1. A control was defined as an age group-matched patient who visited the same hospital with influenza-like illness within 48 hours of symptom onset but for whom laboratory tests were negative for influenza. Age group and visit date were matched between the cases and controls. Vaccine effectiveness (VE) was defined as [100 × (1-odds ratio for influenza in vaccinated versus non-vaccinated persons)]. The patients with laboratory-confirmed influenza were followed for at least one month through reviewing the medical records and conducting a telephone interview.

Results

The VE of the 2011–2012 seasonal influenza vaccine was 3.8% [95% confidence interval (CI), -16.5% to 20.6%] for preventing laboratory-confirmed influenza, -16.1% (95% CI, -48.3 to 9.1) for influenza A and 26.2% (95% CI, -2.6 to 46.2) for influenza B. The age-specific adjusted VE was 0.3% (95% CI, -29.4 to 23.1) among participants aged 19 to 49 years, 11.9% (95% CI, -34.3 to 42.2) among those aged 50 to 64 years and -3.9% (-60.1 to 32.5) among those aged ≥65 years. The adjusted VE for preventing any influenza-related complications was -10.7% (95% CI, -41.1% to 42.2%).

Conclusions

The 2011–2012 seasonal influenza vaccine was not effective in preventing laboratory-confirmed influenza or influenza-related complications in adult Korean populations.  相似文献   

14.

Background

The transmission of influenza viruses occurs person to person and is facilitated by contacts within enclosed environments such as households. The aim of this study was to evaluate secondary attack rates and factors associated with household transmission of laboratory-confirmed influenza A(H1N1)pdm09 in the pandemic and post-pandemic seasons.

Methods

During the 2009–2010 and 2010–2011 influenza seasons, 76 sentinel physicians in Navarra, Spain, took nasopharyngeal and pharyngeal swabs from patients diagnosed with influenza-like illness. A trained nurse telephoned households of those patients who were laboratory-confirmed for influenza A(H1N1)pdm09 to ask about the symptoms, risk factors and vaccination status of each household member.

Results

In the 405 households with a patient laboratory-confirmed for influenza A(H1N1)pdm09, 977 susceptible contacts were identified; 16% of them (95% CI 14–19%) presented influenza-like illness and were considered as secondary cases. The secondary attack rate was 14% in 2009–2010 and 19% in the 2010–2011 season (p = 0.049), an increase that mainly affected persons with major chronic conditions. In the multivariate logistic regression analysis, the risk of being a secondary case was higher in the 2010–2011 season than in the 2009–2010 season (adjusted odds ratio: 1.72; 95% CI 1.17–2.54), and in children under 5 years, with a decreasing risk in older contacts. Influenza vaccination was associated with lesser incidence of influenza-like illness near to statistical significance (adjusted odds ratio: 0.29; 95% CI 0.08–1.03).

Conclusion

The secondary attack rate in households was higher in the second season than in the first pandemic season. Children had a greater risk of infection. Preventive measures should be maintained in the second pandemic season, especially in high-risk persons.  相似文献   

15.

Background

Reexamining the prevalence of persons infected with tuberculosis (TB) is important to determine trends over time. In 2011–2012 a TB component was included in the National Health and Nutrition Examination Survey (NHANES) to estimate the reservoir of persons infected with TB.

Methods

Civilian, noninstitutionalized U.S. population survey participants aged 6 years and older were interviewed regarding their TB history and eligibility for the tuberculin skin test (TST) and interferon gamma release assay (IGRA) blood test. Once eligibility was confirmed, both tests were conducted. Prevalence and numbers of TST positive (10 mm or greater), IGRA positive, and both TST and IGRA positive were calculated by adjusting for the complex survey design after applying corrections for item nonresponse and digit preference in TST induration measurements. To examine TST positivity over time, data from NHANES 1999–2000 were reanalyzed using the same statistical methods. The TST was performed using Tubersol, a commercially available purified protein derivative (PPD), rather than PPD-S, which was the antigen used in NHANES 1999–2000. Prior patient history of TB vaccination was not collected in this study nor were patients examined for the presence of a Bacillus of Calmette and Guerin (BCG) vaccine scar.

Results

For NHANES 2011–2012, TST and IGRA results were available for 6,128 (78.4%) and 7,107 (90.9%) eligible participants, respectively. There was no significant difference between the percentage of the U.S. population that was TST positive in 2011–2012 (4.7% [95% CI 3.4–6.3]; 13,276,000 persons) compared with 1999–2000 (4.3%; 3.5–5.3). In 2011–2012 the percentage that was IGRA positive was 5.0% (4.2–5.8) and double TST and IGRA positivity was 2.1% (1.5–2.8). The point estimate of IGRA positivity prevalence in foreign-born persons (15.9%; 13.5–18.7) was lower than for TST (20.5%; 16.1–25.8) in 2011–2012. The point estimate of IGRA positivity prevalence in U.S.-born persons (2.8%; 2.0–3.8) was higher than for TST (1.5%; 0.9–2.6).

Conclusions

No statistically significant decline in the overall estimated prevalence of TST positivity was detected from 1999–2000 to 2011–2012. The prevalence of TB infection, whether measured by TST or IGRA, remains lower among persons born in the United States compared with foreign-born persons.  相似文献   

16.

Background

Most influenza surveillance is based on data from urban sentinel hospitals; little is known about influenza activity in rural communities. We conducted influenza surveillance in a rural region of China with the aim of detecting influenza activity in the 2009/2010 influenza season.

Methods

The study was conducted from October 2009 to March 2010. Real-time polymerase chain reaction was used to confirm influenza cases. Over-the-counter (OTC) drug sales were daily collected in drugstores and hospitals/clinics. Space-time scan statistics were used to identify clusters of ILI in community. The incidence rate of ILI/influenza was estimated on the basis of the number of ILI/influenza cases detected by the hospitals/clinics.

Results

A total of 434 ILI cases (3.88% of all consultations) were reported; 64.71% of these cases were influenza A (H1N1) pdm09. The estimated incidence rate of ILI and influenza were 5.19/100 and 0.40/100, respectively. The numbers of ILI cases and OTC drug purchases in the previous 7 days were strongly correlated (Spearman rank correlation coefficient [r] = 0.620, P = 0.001). Four ILI outbreaks were detected by space-time permutation analysis.

Conclusions

This rural community surveillance detected influenza A (H1N1) pdm09 activity and outbreaks in the 2009/2010 influenza season and enabled estimation of the incidence rate of influenza. It also provides a scientific data for public health measures.  相似文献   

17.

Background

The World Health Organisation recommends outpatient influenza-like illness (ILI) and inpatient severe acute respiratory illness (SARI) surveillance. We evaluated two influenza surveillance systems in South Africa: one for ILI and another for SARI.

Methodology

The Viral Watch (VW) programme has collected virological influenza surveillance data voluntarily from patients with ILI since 1984 in private and public clinics in all 9 South African provinces. The SARI surveillance programme has collected epidemiological and virological influenza surveillance data since 2009 in public hospitals in 4 provinces by dedicated personnel. We compared nine surveillance system attributes from 2009–2012.

Results

We analysed data from 18,293 SARI patients and 9,104 ILI patients. The annual proportion of samples testing positive for influenza was higher for VW (mean 41%) than SARI (mean 8%) and generally exceeded the seasonal threshold from May to September (VW: weeks 21–40; SARI: weeks 23–39). Data quality was a major strength of SARI (most data completion measures >90%; adherence to definitions: 88–89%) and a relative weakness of the VW programme (62% of forms complete, with limited epidemiologic data collected; adherence to definitions: 65–82%). Timeliness was a relative strength of both systems (e.g. both collected >93% of all respiratory specimens within 7 days of symptom onset). ILI surveillance was more nationally representative, financially sustainable and expandable than the SARI system. Though the SARI programme is not nationally representative, the high quality and detail of SARI data collection sheds light on the local burden and epidemiology of severe influenza-associated disease.

Conclusions

To best monitor influenza in South Africa, we propose that both ILI and SARI should be under surveillance. Improving ILI surveillance will require better quality and more systematic data collection, and SARI surveillance should be expanded to be more nationally representative, even if this requires scaling back on information gathered.  相似文献   

18.

Background

The public health response to pandemic influenza is contingent on the pandemic strain''s severity. In late April 2009, a potentially pandemic novel H1N1 influenza strain (nH1N1) was recognized. New York City (NYC) experienced an intensive initial outbreak that peaked in late May, providing the need and opportunity to rapidly quantify the severity of nH1N1.

Methods and Findings

Telephone surveys using rapid polling methods of approximately 1,000 households each were conducted May 20–27 and June 15–19, 2009. Respondents were asked about the occurrence of influenza-like illness (ILI, fever with either cough or sore throat) for each household member from May 1–27 (survey 1) or the preceding 30 days (survey 2). For the overlap period, prevalence data were combined by weighting the survey-specific contribution based on a Serfling model using data from the NYC syndromic surveillance system. Total and age-specific prevalence of ILI attributed to nH1N1 were estimated using two approaches to adjust for background ILI: discounting by ILI prevalence in less affected NYC boroughs and by ILI measured in syndromic surveillance data from 2004–2008. Deaths, hospitalizations and intensive care unit (ICU) admissions were determined from enhanced surveillance including nH1N1-specific testing. Combined ILI prevalence for the 50-day period was 15.8% (95% CI:13.2%–19.0%). The two methods of adjustment yielded point estimates of nH1N1-associated ILI of 7.8% and 12.2%. Overall case-fatality (CFR) estimates ranged from 0.054–0.086 per 1000 persons with nH1N1-associated ILI and were highest for persons ≥65 years (0.094–0.147 per 1000) and lowest for those 0–17 (0.008–0.012). Hospitalization rates ranged from 0.84–1.34 and ICU admission rates from 0.21–0.34 per 1000, with little variation in either by age-group.

Conclusions

ILI prevalence can be quickly estimated using rapid telephone surveys, using syndromic surveillance data to determine expected “background” ILI proportion. Risk of severe illness due to nH1N1 was similar to seasonal influenza, enabling NYC to emphasize preventing severe morbidity rather than employing aggressive community mitigation measures.  相似文献   

19.
The objective of this study was to identify possible hygiene behaviors associated with the incidence of ILI among adults in Beijing. In January 2011, we conducted a multi-stage sampling, cross-sectional survey of adults living in Beijing using self-administered anonymous questionnaires. The main outcome variable was self-reported ILI within the past year. Multivariate logistic regression was used to identify factors associated with self-reported ILI. A total of 13003 participants completed the questionnaires. 6068 (46.7%) of all participants reported ILI during the past year. After adjusting for demographic characteristics, the variables significantly associated with a lower likelihood of reporting ILI were regular physical exercise (OR 0.80; 95% CI 0.74–0.87), optimal hand hygiene (OR 0.87; 95% CI 0.80–0.94), face mask use when going to hospitals (OR 0.87; 95% CI 0.80–0.95), and not sharing of towels and handkerchiefs (OR 0.68; 95% CI 0.63–0.73). These results highlight that personal hygiene behaviors were potential preventive factors against the incidence of ILI among adults in Beijing, and future interventions to improve personal hygiene behaviors are needed in Beijing.  相似文献   

20.

Background

Human immunodeficiency virus (HIV) infection and its treatment cause a range of hematological abnormalities. Anemia is one of the commonly observed hematologic manifestations in HIV positive persons and it has multifactorial origin.

Objective

We aimed to determine the prevalence and risk factors of anemia in highly active antiretroviral therapy (HAART) naïve and HAART experienced HIV positive persons.

Methods

A facility-based comparative cross sectional study was conducted in Jimma University Specialized Hospital from February 1 to March 30, 2012. A total of 234 HIV positive persons, 117 HAART naïve and 117 HAART experienced, were enrolled in this study. Blood and stool specimens were collected from each participant. Blood specimens were examined for complete blood count, CD4 count and blood film for malaria hemoparasite; whereas stool specimens were checked for ova of intestinal parasites. Socio-demographic characteristics and clinical data of the participants were collected using pre-tested questionnaire. Statistical analysis of the data (Chi-square, student’s t-test, logistic regression) was done using SPSS V-16.

Results

The overall prevalence of anemia was 23.1%. The prevalence of anemia in HAART naïve and HAART experienced persons was 29.9% and 16.2%, respectively (P = 0.014). Presence of opportunistic infections (P = 0.004, 95% CI = 1.69–15.46), CD4 count <200 cells/µl (P = 0.001, 95% CI = 2.57–36.89) and rural residence (P = 0.03, 95% CI = 1.12–10.39) were found to be predictors of anemia for HAART naïve participants. On the other hand, HAART regimen (ZDV/3TC/NVP) (P = 0.019, 95% CI = 0.01–1.24) and the duration of HAART (P = 0.007, 95% CI = 0.003–0.40.24) were found to be predictors of anemia for HAART experienced groups.

Conclusion

The prevalence of anemia in HAART naïve persons was higher than HAART experienced persons. Risk factors for anemia in HAART naïve and HAART experienced HIV positive persons were different. Hence, there is a need for longitudinal study to further explore the causes of HIV associated anemia and the pattern of hemoglobin changes with initiation of HAART.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号