首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptoplax emarginata and Bornmuellera tymphaea are nickel hyperaccumulators of the Brassicaceae family endemic to serpentine soils in Greece. The aims of this work were to compare the growth and uptake behavior of these plants with the Ni hyperaccumulator species Thlaspi caerulescens and Alyssum murale, and to evaluate their effect on soil Ni availability. Plants were grown for 3 mo on three soils that differ in Ni availability. Ni availability in soils was measuredby isotopic exchange kinetics and DTPA-TEA extractions. Results showed that L. emarginata produced significantly more biomass than other plants. On the serpentine soil, B. tymphaea showed the highest Ni concentration in shoots. However, Niphytoextraction on the three soils was maximal with L. emarginata. The high initial Ni availability of soil Serp (470.5 mg kg(-1)) was the main explanation for the high Ni concentrations measured in plant shoots grown on this soil, compared to those grown on soils Calc and Silt A. murale was the least efficient in reducing Ni availability on the serpentine soil L. emarginata appeared as the most efficient species for Ni phytoextraction and decrease of the Ni available pool.  相似文献   

2.
Recent studies have shown that application of phytohormones to shoots of Alyssum murale increased biomass production but did not increase Ni shoot concentration. Increased biomass and Ni phytoextraction efficiency is useful to achieve economically viable phytomining. The objective of this study was to evaluate the effect of two types of phytohormones on the Ni phytoextraction capacity of four Alyssum species. Two different commercially available phytohormones (Cytokin® and Promalin®) based on cytokinins and/or gibberellins were applied on shoot biomass of four Ni hyperaccumulating Alyssum species (A. corsicum, A. malacitanum, A. murale, and A. pintodasilvae). Cytokin was applied in two concentrations and promalin in one concentration. The application of phytohormones had no clear positive effect on biomass production, Ni accumulation and Ni phytoextraction efficiency in the studied Alyssum species. A. malacitanum was the only species in which a significantly negative effect of these treatments was observed (in Ni uptake). A slightly positive response to promalin treatment was observed in the biomass production and Ni phytoextraction efficiency of A. corsicum. Although this effect was not significant it does indicate a potential application of these approaches to improve phytoextraction ability. Further studies will be needed to identify the most adequate phytohormone treatment as well as the appropriate concentrations and application times.  相似文献   

3.
Elemental allelopathy suggests that nickel (Ni)-rich leaves shed by hyperaccumulators inhibit the germination and growth of nearby plant species. Here, the germination of eight herbaceous species following addition of Alyssum murale biomass or Ni(NO3)2, with the same Ni level added to soil, was assessed. The distribution of Ni in soil was tested by determining Ni phytoavailability and speciation over time. Phytoavailable Ni in soil amended with biomass declined rapidly over time due to Ni binding to iron (Fe)/manganese (Mn) oxides in the soil. No significant effects on seed germination were observed. Unlike the Ni complex in Alyssum biomass, more Ni remained soluble and phytoavailable in soil amended with Ni(NO3)2, thus significantly inhibiting seed germination. High-Ni leaves shed by hyperaccumulators did not appear to create a 'toxic zone' around the plants and inhibit germination or growth of competing plants. The lack of an allelopathic effect was probably related to low Ni availability.  相似文献   

4.
Degradation of Alyssum murale biomass in soil   总被引:2,自引:0,他引:2  
The Ni-hyperaccumulating plant Alyssum murale accumulates exceptionally high concentrations of nickel in its aboveground biomass. The reasons for hyperaccumulation remain unproven; however, it has been proposed that elemental alelopathy might be important. High-Ni leaves shed by the plant may create a "toxic zone" around the plant where germination or growth of competing plants is inhibited. The efficacy of this argument will partially depend upon the rate at which leaves degrade in soil and free metals are released, and the subsequent rate at which metals are bound to soil constituents. To test the degradation of biomass of hyperaccumulators, A. murale was grown on both high- and low-Ni soils to achieve high- (12.0 g Ni/kg) and low- (0.445 g Ni/kg) Ni biomass. Shredded leaf and stem biomass were added to a serpentine soil from Oregon that was originally used to grow high-Ni biomass and a low-Ni control soil from Maryland. Biomass Ni was readily soluble and extractable, suggesting near immediate release as biomass was added to soil Extractable nickel in soil amended with biomass declined rapidly over time due to Ni binding in soil These results suggest that Ni released from biomass of Ni hyperaccumulators may significantly affect their immediate niche only for short periods of time soon after leaf fall, but repeated application may create high Ni levels under and around hyperaccumulators.  相似文献   

5.
The effect of transpiration on cytokinin accumulation and distribution in 7-day-old wheat (Triticum durum Desf.) seedlings grown on nutrient medium supplemented with zeatin or its riboside was studied. The content of cytokinins in plants and nutrient medium was measured by the immunoenzyme analysis; cytokinin distribution between root cells was assessed immunohistochemically using antibodies against zeatin derivatives. The rate of transpiration was reduced 20-fold by plant placing in humid chamber. At normal transpiration, after 6 h of plant incubation on the solution of zeatin, the level of cytokinins in plant tissues increased stronger than after incubation on the solution of zeatin riboside (by 7.3 and 3.5 times, respectively, as compared with control), although the rates of both cytokinin uptake were equal. Most portions of cytokinins were retained in the roots, which was stronger expressed in the case of free zeatin uptake. A decrease in the rate of transpiration did not affect substantially the zeatin absorption from nutrient medium and the total level of cytokinin accumulation in plants, but these indices were sharply decreased in the case of zeatin riboside. In the zone of absorption of both control roots and roots treated with cytokinins, more intense cytokinin immunostaining was observed in the cells of the central cylinder. The interrelation between cytokinin distribution between the cells and apoplast, their inactivation, and transport over the plant and their form (zeatin or zeatin riboside) used for treatment is discussed.  相似文献   

6.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

7.
This study was conducted to elucidate effects of inoculating plant growth-promoting bacterium Psychrobacter sp. SRS8 on the growth and phytoextraction potential of energy crops Ricinus communis and Helianthus annuus in artificially Ni contaminated soils. The toxicity symptom in plants under Ni stress expressed as chlorophyll, protein content, growth inhibition, and Fe, P concentrations were studied, and the possible relationship among them were also discussed. The PGPB SRS8 was found capable of stimulating plant growth and Ni accumulation in both plant species. Further, the stimulation effect on plant biomass, chlorophyll, and protein content was concomitant with increased Fe and P assimilation from soil to plants. Further, the induction of catalase and peroxidase activities was also involved in the ability of SRS8 to increase the tolerance in both plant species under Ni stress. The findings suggest that strain SRS8 play an important role in promoting the growth and phytoextraction efficiency of R. communis and H. annuus, which may be used for remediation of metal contaminated sites.  相似文献   

8.
The biomass structure and the contents of (ABA) and cytokinins (zeatin plus zeatin riboside) were studied in flowering plants of ten herbaceous species of the Middle Urals representing stress-tolerant (S) and ruderal (R) ecological strategies. The plants, which explicitly manifested S- and R-strategies, differed in ABA and cytokinin concentrations and phytohormone partitioning in particular organs. Higher ABA accumulation in the leaves and especially in the reproductive organs (here the ABA concentration exceeded by several times that of cytokinins) was characteristic of the R-plants as compared to the S-plants. In addition, the R-plants manifested higher cytokinin contents in the roots, whereas, in the S-plants, cytokinins dominated in the leaves and the reproductive organs (in the latter, the content of cytokinins exceeded that of ABA). The diverse hormonal status of the R- and S-species is discussed in relation to the patterns of plant growth and development and the photosynthate transport and partitioning characteristic of two ecological strategies. The authors conclude that plant ability to maintain the typical hormonal balance is instrumental in acquiring specific ecological strategies.  相似文献   

9.
10.
Cytokinins from the roots may be involved in regulating rose ( Rosa hybrida ) shoot growth and development. The objective of this study was to estimate the export of cytokinins from the roots and their degradation rate in the shoot, which were expected to be correlated with plant development. Hence, the total cytokinin content of the shoot, the concentration of zeatin riboside (ZR) in bleeding sap, and the transpiration rates in three stages of development were determined. The estimations performed are based on the assumption that the cytokinin concentration in bleeding sap is representative for the cytokinin concentration in xylem sap in situ. This was verified by comparing the ZR concentration in bleeding sap and in sap obtaíned after pressurizing the root system to a level equivalent to the leaf water potential; no significant differences could be found. The import of cytokinins could not be correlated with plant development, as it increased linearly with time. The estimated relative degradation rate of cytokinins in the shoot decreased as the plants matured. The half-life of cytokinins in the shoot was found to be approximately 1 day, indicating that cytokinins are rapidly metabolized in the shoot.  相似文献   

11.
Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya   总被引:3,自引:0,他引:3  
Most commonly used hyperaccumulator plants for phytoextraction of metals evolved on soils where moisture is limited throughout much of the year. As these plant species are commercialized for use, they are frequently moved from the point of evolution to locations where environmental conditions may be significantly different. Greatest among these potential differences is soil moisture. The objective of this study was therefore to determine whether these plants could grow in soils with much higher soil moisture and whether they would continue to hyperaccumulate metals as soils approach saturation. We examined extractable soil metal concentrations, plant growth, and metal accumulation for the Ni hyperaccumulators, Alyssum murale and Berkheya coddii and the Zn hyperaccumulators Thlaspi caerulescens cultivars AB300 and AB336. Non-hyperaccumulating control species for each were also examined. In general, extractable soil concentrations of Ni decreased with increasing soil moisture content. Few significant effects related to Zn extractability were observed for any of the soil moisture treatments. The biomass of all tested species was generally greater at higher soil moisture and inhibited at low soil moisture. Further, plants accumulated large amounts of metals from soil at higher soil moisture. Highest foliar concentrations of Zn or Ni were found at the two highest WHCs of 80 and 100%. These results show that hyperaccumulators grow well under conditions of high soil moisture content and that they continue to hyperaccumulate metals. Thus, growing Thlaspi, Alyssum, and Berkheya for commercial phytoextraction under nonnative conditions is appropriate and suggests that this technology may be applied to a wide and diverse range of soil types, climatic conditions, and irrigation regimes.  相似文献   

12.
Li  Yin-M.  Chaney  Rufus  Brewer  Eric  Roseberg  Richard  Angle  J. Scott  Baker  Alan  Reeves  Roger  Nelkin  Jay 《Plant and Soil》2003,249(1):107-115
In recent R&D work, we have made progress in developing a commercial technology using hyperaccumulator plant species to phytoextract nickel (Ni) from contaminated and/or Ni-rich soils. An on-going program is being carried out to develop a genetically improved phytoextraction plant that combines favorable agronomic and Ni accumulation characteristics. Genetically diverse Ni hyperaccumulator species and ecotypes of Alyssum were collected and then evaluated in both greenhouse and field using serpentine and Ni-refinery contaminated soils. Large genetic variation was found in those studies. Mean shoot Ni concentrations in field-grown plants ranged from 4200 to 20400 mg kg–1. We have been studying several soil management practices that may affect the efficiency of Ni phytoextraction. Soil pH is an important factor affecting absorption of metals by plants. An unexpected result of both greenhouse and field experiments was that Ni uptake by two Alyssum species was reduced at lower soil pH and increased at higher soil pH. At higher pH, plant yield was improved also. In soil fertility management studies, we found that N application significantly increased plant biomass, but did not affect plant shoot Ni concentration. These findings indicate that soil management will be important for commercial phytoextraction. A number of field trials have been carried out to study planting methods, population density, weed control practices, harvest schedule and methods, pollination control, and seed processing. Such crop management studies have improved phytoextraction efficiency and provide a tool for farmers to conduct commercial production. We have done some work to develop efficient and cost-effective methods of Ni recovery. Recovery of energy by biomass burning or pyrolysis could help make phytoextraction more cost-effective. The progress made in our recent studies will enable us to apply this technology commercially in the near future.  相似文献   

13.
A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.  相似文献   

14.

Aim

Rhizobacteria can influence plant growth and metal accumulation. The aim of this study was to evaluate the effect of rhizobacterial inoculants on the Ni phytoextraction efficiency of the Ni-hyperaccumulator Alyssum pintodasilvae.

Method

In a preliminary screening 15 metal-tolerant bacterial strains were tested for their plant growth promoting (PGP) capacity or effect on Ni bioaccumulation. Strains were selected for their Ni tolerance, plant growth promoting traits and Ni solubilizing capacity. In a re-inoculation experiment five of the previously screened bacterial isolates were used to inoculate A. pintodasilvae in two contrasting Ni-rich soils (a serpentine (SP) soil and a sewage sludge-affected agricultural (LF) soil).

Results

Plant growth was greater in serpentine soil (where it grows naturally) than in the LF soil, probably due to Cd phytotoxicity. Rhizobacterial inoculants influenced plant growth and Ni uptake and accumulation, but the effect of the strains was dependent upon soil type. The increase in plant biomass and/or Ni accumulation significantly promoted shoot Ni removal.

Conclusion

One strain (Arthrobacter nicotinovorans SA40) was able to promote plant growth and phytoextraction of Ni in both soil types and could be a useful candidate for future field-based trials.  相似文献   

15.
The content of cytokinins and pigments together with the morphological parameters and fresh weight were estimated in durum wheat (Triticum durum Desf.) plants 2–4 days after introduction into their rhizosphere of an aliquot of Bacillus suspension using the strains that differed in their ability of producing cytokinins. The experiments were performed under laboratory conditions at the optimum light intensity and mineral nutrition. Inoculation with microorganisms incapable to synthesize cytokinins did not affect the total cytokinin content in the wheat plants, whereas the presence of cytokinin-producing microorganisms in the rhizosphere was accompanied by a considerable increase in the total cytokinin content and the accumulation of individual hormones. On the second day after inoculation, a dramatic increase in zeatin riboside and zeatin O-glucoside contents was observed in the roots, and at the next day the accumulation of zeatin riboside and zeatin was registered in the shoots of treated plants. The increase in cytokinin content promoted plant growth (the increased leaf length and width and a faster accumulation of plant fresh and dry weight). Plant treatment with a substance obtained from microorganisms incapable to synthesize hormones resulted in the insignificant growth stimulation. Plant treatment with a substance obtained from cytokinin-producing microorganisms increased leaf chlorophyll content; in this case, the level of chlorophylls was comparable to that observed in the plants treated with a synthetic cytokinin benzyladenine. The role of cytokinins of microbial origin as a factor providing for growth-stimulating effect of bacteria on plants is discussed.  相似文献   

16.
Phytoextraction represents an innovative approach in the management of nickel (Ni) rich soils whether natural (ultramafic) or anthropogenic (contaminated sites). However, its success depends both on the production of a high plant biomass and the ability of plants to accumulate metals. The application of nitrogen (N) fertilizer can improve the biological and chemical soil fertility and thus agricultural yields. Moreover, soil microorganisms play a key role by influencing nutrient flows, which are the main limiting factors of plant growth in degraded soils. In this work, we investigated the effects of two levels of both Ni and mineral N soil applications on the microbial activities and Ni phytoextraction efficiency by Alyssum murale growing in a pot experiment during 5 months. Plant growth, nutrients and Ni uptake, soil microbial populations and their enzymatic activities involved in the biogeochemical cycles of nitrogen, phosphorus, carbon and sulfur (urease, alkaline phosphatase, β-glucosidase and arylsulfatase, respectively) were determined. The results showed that plant dry mass was unsurprisingly not affected when the soil Ni concentration was increased. However, it led to an increase of the amount of Ni extracted per pot. A negative effect of Ni addition was observed on both total bacteria and urease activity, without any effect on other enzymes. On the contrary, N fertilizer played a significant positive role by promoting both plant growth and Ni phytoextraction, partly as a result of the stimulation and flourishing of bacterial populations.  相似文献   

17.
A pot experiment was conducted to investigate the effect of nickel concentration on physiological characteristics of Alyssum murale when grown in a soil mixed with sewage sludge (at the rate of 2.8%). Two types of sludge were used: agricultural sewage sludge (S1) and industrial sewage sludge with an increasing nickel concentration (S2, S3, and S4). Results showed that Ni in shoots was higher than Ni in roots. A. murale is able to concentrate up to 12730 mg/kg Ni in leaves. The highest dry matter yield was observed with plants grown with agricultural sewage sludge. An addition of S2 and S3 increased shoot biomass. However, application of S4 reduced 40% shoot dry weight as compared to the control Ni treatment did not affect all chlorophyll fluorescence parameters. The F(v)/F(m) ratio was stable between Ni treatments. Photosynthesis rate (A) increased with agricultural sewage sludge, but remained stable with variable Ni rates from the industrial sludge. The chlorophyll content increased with S1, S2 and S3 but it remains constant with S4 when compared to the control Therefore, high nickel concentration did not affect the function of the photosynthetic machine of A. murale.  相似文献   

18.
Cytokinins in photoperiodic induction of flowering in Chenopodium species   总被引:1,自引:0,他引:1  
Changes in cytokinin (zeatin – Z, zeatin riboside – ZR, isopentenyladenine – iP, isopentenyladenosine – iPA) levels were determined under light regimes inductive and non-inductive for flowering in leaves, stems, roots and apical parts of short-day Chenopodium rubrum and long-day Chenopodium murale. In leaves. stems and roots of both plant species the level of cytokinins (in C. rubrum of Z and ZR, in C. murale of Z. ZR, iP and iPA) decreased by about 50% during the dark period and increased again during the subsequent light period, No significant changes in cytokinin levels were observed in continuous light. In apical parts of C. rubrum cytokinin level (Z, ZR, iP) was dramatically increased (by 400–500%) at the end of the dark period and decreased to about the original value during the following light period, while no changes were observed in continuous light. In apical parts of C. murale the level of cytokinins doubled during floral induction consisting of 10 days of continuous light. A red (R) break (15 min at the 6th h of darkness), which prevents flowering in C. rubrum , has no significant effect on cytokinin levels in leaves at the end of darkness. Cytokinin levels increased 1 h after R and decreased again rapidly. On the other hand, the increase of cytokinin level in the apical parts of C. rubrum was largely prevented by the R break. These effects of R on cytokinin levels were not reverted by far-red (FR), while the effect on flowering was reverted. It may be concluded that there is no correlation between changes in cytokinin levels in leaves. Stems and roots and photoperiodic flower induction, as both species, representing different photoperiodic types, showed similar changes under the same light regime. The increase of cytokinin levels in apical parts of both photoperiodic species during floral induction suggests a role (increased cell division and branching) for cytokinins in apex evocation.  相似文献   

19.
Little is known about the effect of elemental sulfur on lead uptake and its toxicity in wheat. A pot experiment was conducted with the purpose to examine the impact of sulfur on improving Pb solubility in soil, and uptake and accumulation in wheat plants. The effect of three levels of lead (0, 50, and 100 mg/kg soil) and sulfur (0, 150, and 300 mmol/kg soil) was tested in all possible combinations. Root dry matter, straw, and grain yields, and the photosynthetic and transpiration rates decreased significantly with increase in the concentration of Pb in the soil. However, sulfur fertilization in the presence of Pb improved the photosynthetic and transpiration rates and consequently increased the straw and grain yields of wheat. It also enhanced Pb accumulation in roots, its translocation from roots to shoot, and accumulation in grain. S and Zn contents of different plant parts were also enhanced. Thus, by mitigating the toxic effect of Pb and improving wheat growth, sulfur enhances Pb accumulation by the aboveground plant parts and hence the phytoextraction capacity of wheat. However, total accumulation of Pb shows that wheat plant cannot be considered as a suitable candidate for phytoremediation.  相似文献   

20.
Triticum durum Desf. plants were grown for 11 days in sand culture on nutrient solutions with optimum or lowered content of mineral nutrients. Thereafter, the level of mineral nutrition was increased in some portion of deficient plants. Two days before, plants were inoculated with cytokinin-producing microorganisms of the Bacillus genus. Nutrition deficiency resulted in a decrease in the rate of plant biomass accumulation, which was correlated with the level of active cytokinins in both roots and shoots. After improving the mineral nutrition of noninoculated plants, the rate of their biomass accumulation increased and, by the end of experiment, their shoot fresh weight was 1.5-fold higher than in deficient plants; however, it was still by 20% lower than in plants continuously growing at optimum mineral nutrition. Inoculation resulted in the considerable increase in the cytokinin content in shoots as compared with all other treatments. In this case, after the improvement of plant mineral nutrition, the rates of growth and relative biomass accumulation increased sharply; as a result, these plants had the highest dry and fresh weights. Thus, inoculation with cytokinin-producing bacteria was beneficial for plant growth after their transfer from deficient to sufficient mineral nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号