首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 915 毫秒
1.
AIMS: Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the corresponding amino acids and this paper intends to perspectivate these flavour compounds in the context of leucine metabolism. METHODS AND RESULTS: GC and GC/MS analysis combined with stable isotope labelling was used to study leucine catabolism. This amino acid together with valine and isoleucine was used as precursors for the production of branched-chain fatty acids for cell membrane biosynthesis during growth. A 83.3% of the cellular fatty acids were branched. The dominating fatty acid was anteiso-C(15:0) that constituted 55% of the fatty acids. A pyridoxal 5'-phosphate and alpha-ketoacid dependent reaction catalysed the deamination of leucine, valine and isoleucine into their corresponding alpha-ketoacids. As alpha-amino group acceptor alpha-keto-beta-methylvaleric acid and alpha-ketoisovaleric acid was much more efficient than alpha-ketoglutarate. The sensorially and metabolic key intermediate on the pathway to the branched-chain fatty acids, 3-methylbutanoic acid was produced from leucine at the onset of the stationary growth phase and then, when the growth medium became scarce in leucine, from the oxidation of glucose via pyruvate. CONCLUSIONS: This paper demonstrates that the sensorially important branched-chain aldehydes and acids are important intermediates on the metabolic route leading to branched-chain fatty acids for cell membrane biosynthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: The metabolic information obtained is extremely important in connection with a future biotechnological design of starter cultures for production of fermented meat.  相似文献   

2.
AIMS: To examine the effect of alpha-ketoglutaric acid (alpha-KG) on the utilization and catabolism of amino acids by strains of nonstarter lactobacilli isolated from Cheddar cheese. METHODS AND RESULTS: The effect of alpha-KG in the growth medium of nonstarter lactobacilli on amino acid metabolism, catabolite levels, peptide hydrolase and aminotransferase activities was examined. The pattern of amino acid utilization, catabolite formation and aminotransferase activity was affected by keto acid. CONCLUSIONS: Amino acid conversion into cheese aroma and flavour compounds by nonstarter lactobacilli is enhanced in the presence of alpha-ketoglutarate. SIGNIFICANCE AND IMPACT OF THE STUDY: Increasing the availability of alpha-ketoglutarate in cheese offers a possible method of reducing the maturation period by accelerating the rate of character compound formation from amino acids by the nonstarter lactobacilli.  相似文献   

3.
Ethical, environmental and health concerns around dairy products are driving a fast-growing industry for plant-based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant-based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant-based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant-based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant-based cheeses and yoghurts is also discussed.  相似文献   

4.
There have been important milestones in biotechnological practice that have led to the determination and production of superior cheese flavours. Within the past year, the use of gas chromatographic techniques and sensory methodologies has been optimised by several groups in efforts to evaluate the organoleptic properties of a number of mature cheeses. The hydrolysis of milk caseins, small peptides, free amino acids and fatty acids, and the generation of sulfur-containing compounds are uniformly assumed to result in the formation of specific cheese aromas. Giant strides have been taken in molecular technology to aid the dissection and exploitation of the metabolic pathways that lead to the formation of these flavour constituents. Specific advances in molecular technology have included metabolic engineering of lactic acid bacteria for enhanced flavour development.  相似文献   

5.
Three closely related 4-hydroxy-3(2H)-furanones have been found in a range of highly cooked foodstuffs where they are important flavour compounds with aroma threshold values as low as 20 micrograms kg-1 water (approximately 0.14 mumol l-1). The compounds are formed mainly as a result of the operation of the Maillard reactions between sugars and amino acids during heating but one compound, 5-(or 2)-ethyl-2-(or 5)-methyl-4-hydroxy-3(2H)-furanone, appears in practice to be produced by yeast, probably from a Maillard intermediate, during the fermentation stages in the production of soy sauce and beer. The compounds are also important in the flavour of strawberry, raspberry, pineapple and tomato but the route of biosynthesis is unknown. Two 3-hydroxy-2(5H)-furanones, emoxyfuranone and sotolon, which are produced spontaneously from amino acids such as threonine and 4-hydroxy-L-leucine are major contributors to meaty and spicy/nutty flavours in foods. The biosynthesis of 5-(1,2-dihydroxyethyl)-3,4-dihydroxy-2(5H)-furanone (ascorbic acid, vitamin C) and 5-hydroxymethyl-3,4-dihydroxy-2(5H)-furanone (erythroascorbic acid) from sugars in plants and yeast, respectively, has been characterized to the enzymic level. After treatment with chlorine, humic waters contain a range of chloro-furanones, some of which, particularly 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), are powerful mutagens. The furanones which occur in foods are also mutagenic to bacteria and cause DNA damage in laboratory tests. However, these compounds are, in practice, very effective anti-carcinogenic agents in the diets of animals which are being treated with known cancer-inducing compounds such as benzo[alpha]pyrene or azoxymethane. Two of the food-derived furanones have antioxidant activity comparable to that of ascorbic acid. A biological function has been discovered for some of the furanones besides vitamin C. 5-Methyl-4-hydroxy-3(2H)-furanone is a male pheromone in the cockroach Eurycolis florionda (Walker) and the 2,5-dimethyl derivative deters fungal growth on strawberries and is an important component of the attractive aroma of the fruit. The red seaweed Delisea pulchra (Greville) Montagne produces a range of brominated furanones which prevent colonisation of the plant by bacteria by interfering with the acylated homoserine lactone (AHL) signalling system used by the bacteria for quorum sensing. In addition, these compounds can deter grazing by marine herbivores. It is proposed here that the evolved biological function of a number of furanones is to act as inter-organism signal molecules in several different systems. This has resulted in two coincidental effects which are important for humans. Firstly, the easily oxidized nature of the furanones in general, which is likely to be an important property in their functioning as signal molecules, results in both mutagenic and anti-carcinogenic activity. The balance of these two effects from compounds in the diet has yet to be fully established. Secondly, and more specifically, the 4-hydroxy-3(2H)-furanones associated with fruit aromas act to attract animals to the fruit, which ensures seed dispersal. In the case of humans, the coincidental synthesis of some of these compounds in foods during preparation results in these foods appearing particularly attractive through the transferred operation of the original signalling mechanisms.  相似文献   

6.
Lactic acid bacteria: starters for flavour   总被引:5,自引:0,他引:5  
Abstract Changing milk into other organoleptically acceptable products by fermentation requires particular attributes of the bacteria. These include rapid acid production from lactose and development of suitable quantities of the volatile compounds, diacetyl and acetaldehyde. These compounds must not be over-produced nor should they be accompanied by off-flavours. More knowledge has accumulated concerning starter cultures for milk fermentation than for any of the other cultured foods. We are approaching the time when we can tailor-make mixed cultures of known species of bacteria to provide specific flavours because we are becoming more aware of their metabolic activity within a given foodstuff. To provide and keep a good starter for a particular fermented product it is essential to know what is expected of it in terms of flavour and aroma. This knowledge is not always available and many products are poor because of this. Knowledge of the biochemical pathways leading to flavour production can help in making the right choice of starter.  相似文献   

7.
Idli is a traditional cereal/legume-based naturally fermented steamed product with a soft and spongy texture which is highly popular and widely consumed as a snack food item in India. The predominant fermentation microflora comprises lactic acid bacteria and yeasts and causes an improvement in the nutritional, textural and flavour characteristics of the final product. The flavour profile of idli batter prepared with initial levels of 2 × 104 c.f.u. g−1 of Candida versatilis CFR 505 and 2 × 101 c.f.u. g−1 of Pediococcus pentosaceus CFR 2123 in 500 g idli batter, packed in polyester polylaminate pouches and stored at 30 ± 2 °C was periodically analysed by GC-MS. The desirable flavour compounds such as ketones, diols and acids were found to be present upto 8 days of storage, whereas undesirable flavours like sulphurous and oxazolidone compounds, ethanone and thiazole appeared in the batter subsequent to 6 days of storage. The sensory attributes of idlis (final product) prepared from the stored batter related well to the determined flavour profile. The present study appeared to indicate that the flavour profile of traditional fermented foods can be a reliable qualitative and quantitative parameter for objective assessment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Formation of flavour compounds in the Maillard reaction   总被引:6,自引:0,他引:6  
This paper discusses the importance of the Maillard reaction for food quality and focuses on flavour compound formation. The most important classes of Maillard flavour compounds are indicated and it is shown where they are formed in the Maillard reaction. Some emphasis is given on the kinetics of formation of flavour compounds. It is concluded that the essential elements for predicting the formation of flavour compounds in the Maillard reaction are now established but much more work needs to be done on specific effects such as the amino acid type, the pH, water content and interactions in the food matrix. It is also concluded that most work is done on free amino acids but hardly anything on peptides and proteins, which could generate peptide- or protein-specific flavour compounds.  相似文献   

9.
Xu P  Hua D  Ma C 《Trends in biotechnology》2007,25(12):571-576
Propenylbenzenes are common aromatic compounds that are often used as starting compounds for the production of various flavours. Recently, microbial transformation has emerged as an important approach for producing natural flavours in high quantities. Because the biotransformation processes are environmentally friendly and the products are considered 'natural', flavour production using this method is attracting more and more attention. This paper reviews recent advances in the application of microbial metabolism to propenylbenzenes and in subsequent flavour production. Vanillin, a valuable aromatic compound, is used as a model to show recent progress in high-value natural flavour production. Future research should focus on metabolic-mechanism characterisation and on optimisation of biotransformation to improve the yields of target products for scale-up and industrial use.  相似文献   

10.
Plants represent the major sources of human foods and livestock feeds, worldwide. However, the limited content of the essential amino acid lysine in cereal grains represents a major nutritional problem for human and for livestock feeding in developed countries. Optimizing the level of lysine in cereal grains requires extensive knowledge on the biological processes regulating the homeostasis of this essential amino acid as well as the biological consequences of this homeostasis. Manipulating biosynthetic and catabolic enzymes of lysine metabolism enabled an enhanced accumulation of this essential amino acid in seeds. However, this approach had a major effect on the levels of various metabolites of the tricarboxylic acid (TCA) cycle, revealing a strong interaction between lysine metabolism and cellular energy metabolism. Recent studies discussed here have shed new light on the metabolic processes responsible for the catabolism of lysine, as well as isoleucine, another amino acid of the aspartate-family pathway, into the TCA cycle. Here we discuss progress being made to understand biological processes associated with the catabolism of amino acids of the aspartate-family pathway and its importance for optimal improvement of the nutritional quality of plants.  相似文献   

11.
AIMS: Lactobacillus helveticus is an essential starter in Swiss-type cheeses such as Emmental. This study was to determine whether cell-free extracts of Lact. helveticus were able to convert free amino acids into neutral volatile aroma compounds at the pH and temperature occurring in cheese. METHODS AND RESULTS: A mix of branched-chain (Leu, Ile, Val), aromatic (Tyr, Phe) and sulphur (Met) amino acids was incubated for 7 days, at pH 5.7 and 24 degrees C, with cell-free extracts of six strains. The amino acids were all transaminated into the corresponding keto acids when an amino group acceptor (alpha-ketoglutaric acid) was provided. Phe and Tyr were transaminated the most efficiently, followed by Leu, Met, Ile and Val. Three major volatile compounds were detected by GC-MS: benzaldehyde, dimethyl disulphide and 2-methyl propanol. Whatever the strain, benzaldehyde was produced in the highest quantity (0.25-1 micromol l(-1) mg(-1) protein). CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus helveticus intracellular enzymes could significantly contribute to the production of aroma compounds from amino acid catabolism.  相似文献   

12.
The observed relation found in sheep between the flux rate of an amino acid and the proportion found in whole-body protein suggests that the major immediate fate of an amino acid is its incorporation into tissue protein. This may be true even for dispensable amino acids. In ruminants, there is substantial utilization of several amino acids (serine, glycine, threonine, histidine, and methionine) for the synthesis of methyl groups; the use of these amino acids for gluconeogenesis is limited. There is little evidence that demands of gluconeogenesis limit the availability of amino acids for protein synthesis. Most amino acids are catabolized in the liver but there may be significant catabolism of alanine, aspartate, and glutamate in peripheral tissues, especially muscle. Normally, peripheral catabolism of branched-chain amino acids is significantly less in ruminants than other species. Nevertheless, there is some oxidation of leucine by muscle and this may be substantially increased in the diabetic state. Catabolism of leucine (and perhaps isoleucine and valine) might be inversely related to use for protein synthesis, but there is no evidence of such a relation for other amino acids.  相似文献   

13.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of alpha-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced alpha-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

14.
Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an alpha-keto acid such as alpha-ketoglutarate (alpha-KG) as the amino group acceptor, and produced alpha-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces alpha-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without alpha-KG addition. In the presence of alpha-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced alpha-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from alpha-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an alpha-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the alpha-keto acid conversion to acids in L. helveticus and S. thermophilus is an alpha-keto acid dehydrogenase that produces acyl coenzymes A.  相似文献   

15.
Hindquarters from starved rats were perfused with plasma concentrations of amino acids, but without other added substrates. Release of amino acids was similar to that previously reported, but, if total amino acid changes were recorded, alanine and glutamine were not formed in excess of their occurrence in muscle proteins. In protein balance (excess insulin) there was no net formation of either alanine or glutamine, even though the branched-chain amino acids and methionine were consumed. If [U-14C]valine was present, radiolabelled 3-hydroxyisobutyrate and, to a lesser extent, 2-oxo-3-methylbutyrate accumulated and radiolabel was incorporated into citrate-cycle intermediates and metabolites closely associated with the citrate cycle (glutamine and glutamate, and, to a smaller extent, lactate and alanine). If a 2-chloro-4-methylvalerate was present to stimulate the branched-chain oxo acid dehydrogenase, flux through this step was accelerated, resulting in increased accumulation of 3-hydroxyisobutyrate, decreased accumulation of 2-oxo-3-methylbutyrate, and markedly increased incorporation of radiolabel (specific and total) into all measured metabolites formed after 3-hydroxyisobutyrate. It is concluded that: amino acid catabolism by skeletal muscle is confined to degradation of the branched-chain amino acids, methionine and those that are interconvertible with the citrate cycle; amino acid catabolism is relatively minor in supplying carbon for net synthesis of alanine and glutamine; and partial degradation products of the branched-chain amino acids are quantitatively significant substrates released from muscle for hepatic gluconeogenesis. For valine, 3-hydroxyisobutyrate appears to be quantitatively the most important intermediate released from muscle. A side path for inter-organ disposition of the branched-chain amino acids is proposed.  相似文献   

16.
Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.  相似文献   

17.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of α-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced α-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

18.
V A Konyshev 《Genetika》1983,19(1):17-25
The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.  相似文献   

19.
Aphids are highly specialized insects that feed on the phloem-sap of plants, the amino acid composition of which is very unbalanced. Amino acid metabolism is thus crucial in aphids, and we describe a novel investigation method based on the use of 14C-labeled amino acids added in an artificial diet. A metabolism cage for aphids was constructed, allowing for the collection and analysis of the radioactivity incorporated into the aphid body, expired as CO2, and rejected in the honeydew and exuviae. This method was applied to the study of the metabolism of eight energetic amino acids (aspartate, glutamate, glutamine, glycine, serine, alanine, proline, and threonine) in the pea aphid, Acyrthosiphon pisum. All these amino acids except threonine were subject to substantial catabolism as measured by high 14CO2 production. The highest turnover was displayed by aspartate, with 60% of its carbons expired as CO2. For the first time in an aphid, we directly demonstrated the synthesis of three essential amino acids (threonine, isoleucine, and lysine) from carbons of common amino acids. The synthesis of these three compounds was only observed from amino acids that were previously converted into glutamate. This conversion was important for aspartate, and lower for alanine and proline. To explain the quantitative results of interconversion between amino acids, we propose a compartmentation model with the intervention of bacterial endosymbiotes for the synthesis of essential amino acids and with glutamate as the only amino acid supplied by the insect to the symbiotes. Moreover, proline exhibited partial conversion into arginine, and it is suggested that proline is probably indirectly involved in excretory nitrogen metabolism. © 1995 Wiley-Liss, Inc.  相似文献   

20.
A microbiological assay to detect different chemical compounds of selenium for potential future use in the study of the distribution of these chemical forms in foods is being developed. This assay is based on the detection, by infrared analysis, of CO2 in a culture of Escherichia coli when the bacteria are grown in the presence of various selenium compounds. The CO2 production is the result of selenium-dependent formate dehydrogenase activity, which catalyzes oxidation of formic acid produced during glucose metabolism. Smooth response curves were generated over several orders of magnitude for selenocystine, selenite, and selenomethionine. The assay detects selenium concentrations (above background) as low as 1.5 nM for selenocystine and selenite and 4 nM for selenomethionine in minimal medium. Detection of selenomethionine was enhanced (to a sensitivity of 1.5 nM) by the addition of methionine to minimal medium and was enhanced even further (to a sensitivity of 0.8 nM) by the addition of a defined mixture of amino acids. Selenomethionine could be assayed in the presence of an amino acid concentration which is proportional to the amino acid/elemental selenium ratio found in a wheat gluten reference material (NIST SRM 8418). This implies that the assay can detect selenium compounds in a variety of foods at low concentrations, avoiding the background CO2 production caused by high concentrations of non-selenium-containing amino acids. The observation that methionine enhanced selenomethionine availability for formate dehydrogenase synthesis supports studies in animals demonstrating that methionine controls selenomethionine incorporation into selenoenzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号