首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary The presence of colicinogenic plasmids ColIb-P9 and ColIa-CA53 in E. coli K-12 cells, wild-type with respect to repair, enhanced the survival of cells after UV irradiation and increased the frequency of UV-induced argE3 and his-4 reversions, while the presence of ColV-K30 negatively affected repair and mutagenesis. The plasmid ColIb-P9 showed a UV-protective effect in E. coli cells carrying mutations in genes uvrA, uvrB, uvrC, polA, recB, recF, though in none of the mutants did cell survival reach the wild-type level. The effect of ColIb-P9 on mutagenesis did not depend on the uvrA or recB genes. The plasmids' protective effect and the enhancement of mutagenesis depended on the recA + lexA+ genotype. The frequency of 2-aminopurine-induced mutations was not affected by ColIb-P9 or ColV-K30. The presence of ColIb-P9 decreased the ability of ColEl-carrying cells to induce colicin E1 synthesis caused by DNA-damaging agents: UV, MNNG, mitomycin C, whereas ColV-K30 increased the percentage of colicin E1-producing cells. These plasmid effects on the level of induction of colicin E1 synthesis were not observed in the case of induction caused by chloramphenicol which did not depend on the products of recA and lexA genes.Abbreviations AP 2-aminopurine - MNNG N-methyl-N-nitro-N-nitrosoguanidine - ICS induction of colicin synthesis - CM chlorampheniol - MC mitomycin C  相似文献   

2.
Summary Twenty Tn5 insertion mutants of the drug resistance plasmid pKM101 have been isolated that are unable to enhance mutagenesis with ultraviolet (UV) irradiation or methyl methanesulfonate. By restriction mapping, the Tn5 insertion in each of these pKM101 mutants was shown to be within a 1.9 kb region of the plasmid genome. We have termed this segment of the pKM101 map the muc (mutagenesis: UV and chemical) gene(s). Characterization of these mutants indicated that any Tn5 insertion within the muc gene(s) abolished the ability of pKM101 to: (a) enhance spontaneous, UV and chemical mutagenesis, (b) increase host survival following UV-irradiation, (c) increase the survival of UV-irradiated phage plated on irradiated or unirradiated cells, and (d) suppress the repair and mutagenesis deficiencies of a umuC mutant. Possible models to explain the role of the pKM101 muc gene(s) in mutagenesis and repair are discussed.  相似文献   

3.
The transposon Tn1 as a probe for studying ColE1 structure and function.   总被引:40,自引:0,他引:40  
Summary Insertion of the transposable genetic element Tn1 into different sites of plasmid ColE1 results in a number of mutant phenotypes. Whereas all plasmids examined were present in normal amount, all showed reduced immunity to killing by colicin E1. Of six insertions isolated after conjugation, five fail to produce colicin, are conjugally proficient (transmissible), and map within a 500 nucleotide region of the genome. The other is conjugally deficient, produces colicin normally and maps close to two others with a similar phenotype isolated after transformation. Of four others isolated after transformation, two have similar properties to the original five transmissible plasmids. The other two are nontransmissible and produce colicin. Non-transmissibility is correlated with reduced relaxation complex. Patterns of protein synthesis in minicels by ColE1 and ColE1:: Tn1 plasmids have been examined: all ColE1 plasmids containing Tn1 show an altered pattern of ColE1 protein synthesis in addition to three presumptive Tn1-specified proteins, one of which is shown to be -lactamase. ColE1:: Tn1 plasmids can be inserted into the conjugative plasmid R64drd11 to form a cointegrate in which ColE1 and Tn1 function can be expressed.  相似文献   

4.
The EcoRI and HindII restriction endonucleases and pBR325 vector plasmid were used to obtain a set of hybrid plasmids containing ColIb-P9 fragments carrying the characters for colicin Ib synthesis and immunity and the ability to inhibit T5 phage growth. The genes responsible for colicin synthesis and immunity are closely linked and localized in the EcoRI fragment with a molecular weight of 1.85 MD (pIV41) or in the HindII fragment of 2.4 MD (pIV1). The clones containing these plasmids show an increased level of both spontaneous and mitomycin C-induced colicin synthesis and an increased level of immunity due to a larger dosage of the genes. The genes controlling T5 growth inhibition are localized in other restriction fragments of ColIb DNA: the EcoRI fragment of 1.45 MD (pIV7) and the HindII fragment of 4.3 MD (pIV5). We have demonstrated by means of hybrid plasmids that T5 growth inhibition is not connected with the colicin Ib synthesized in infected cells and is controlled by other specific product(s) of the ColIb plasmid genes. T5 phage growth was as efficient in clones containing plasmids with cloned colicin Ib genes as in a strain without plasmids. An investigation of the expression of the genes inhibiting T5 phage growth in an in vitro protein synthesis system has revealed a protein with a molecular weight of 36 000 which seems to take part in the process.  相似文献   

5.
6.
I A Khmel' 《Genetika》1987,23(9):1705-1707
The presence of the ColIa-CA53 plasmid in umuC and umuD mutant Escherichia coli K-12 cells restores their mutability under UV irradiation to a level that even exceeds that of the isogenic umuC+umuD+ strains, as well as increases their resistance to the lethal effects of UV irradiation. The ColIb-P9 plasmid which suppresses the umuC mutant phenotype, as we have shown earlier, acts in the same manner with respect to the umuD mutant cells. The results of the study demonstrate that both plasmids encode products that are functionally similar to those of the chromosomal genes umuC and umuD. The plasmids ColIa-CA53, ColIb-P9 and pKM101 are shown to have practically the same effect upon the mutagenesis and survival of the umuC, umuD mutant cells.  相似文献   

7.
The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating.  相似文献   

8.
The localization of plasmid ColIb-P9 muc genes mediating the plasmids protective and mutagenesis-increasing activity has been determined. The increase of muc genes dose by cloning them within the multicopy vector has been shown to repress the mutator function of the plasmid. No essential homology has been revealed between ColIb-P9 muc gene nucleotide sequences, pKM101 muc genes with a similar function, and umuDC chromosome genes. It has been shown that the synthesis of 38 KD protein is essential for the manifestation of the mutator function of the plasmid.  相似文献   

9.
Summary Recombinant plasmids which render their host less mutable and more sensitive to some DNA-damaging agents have been isolated from the N-group plasmid R46. These plasmids have been physically mapped and found to originate from the region of R46 that has been deleted in pKM101. This deleted region is well removed from the muc region of R46 and pKM101 which is responsible for the mutator effects of these plasmids.The effect of these anti-mutagenic plasmids on the ability of pKM101 to complement umuC mutations has been examined, and they have been found to inhibit the complementation of such strains. We propose that these plasmids may code for a negative control function acting on the muc gene.  相似文献   

10.
The presence of pKM101 or ColIb-P9 plasmids in E. coli leads to the increase in the survival of UV-irradiated cells of wild type and of polAI, recB21 recC22 and dnaGts mutants; it does not change the survival of recA13 and lex3 mutants and does not influence kinetics and efficiency of postreplication repair (PRR) of DNA in cells of all the strains examined (with the exception of PG3 dnaGts mutant whose PRR of DNA in the presence of pKM101 plasmid is somewhat lower). The survival of both plasmid-containing and plasmid-free bacteria treated with chloramphenicol decreases in the same degree, but the survival of chloramphenicol-treated recA13, lex3 recB21 rec C22 mutants does not change. The pKM101 plasmid does not lend the dnaGts mutant a new capacity of repairing postreplication gaps with the participation of inducible component of PRR; the chloramphenicol-sensitive component of PRR is absent in this mutant. Plasmid and plasmid-free E. coli strains of wild type and of the polA1 mutant do not differ by the kinetics and level of inducible chloramphenicol-sensitive component of PRR of DNA.  相似文献   

11.
Summary The presence of the ColIb plasmid in Escherichia coli cells inhibits the growth of bacteriophages BF23 and T5 (Ibf phenotype; inhibition of BF23 and T5 growth). To understand this abortive infection, we devised a method of isolating mutants that were defective in some ColIb phenotypes including Ibf. This method consisted of transduction of the tet (Tcr; tetracycline resistance) or cml (Cmr; chloramphenicol resistance) gene of plasmid R222 with phage P22 into ColIb, construction of TcrCmrIbf+ Imm+ (immunity to colicin Ib) Cib- (no production of colicin Ib) recombinants by crossing between the transductants, and isolation of deletion mutants from the recombinants by phage P1 transduction. By this procedure, pKM25-2 (TcrCmsIbf-Imm-Cib-) and pKM25-1 (TcrCmsIbf+Imm+Cib-) were isolated. Construction of the cleavage map of the ColIb plasmid by restriction endonucleases and comparative analyses of the DNA fragments produced from the mutant plasmids revealed that the genes determining Ibf and Imm mapped on a 4.60 Mdal HindIII fragment (H-3) and the gene determining Cib on a 1.71 Mdal EcoRI fragment (E-12).These results together with other observations (Wilkins et al. 1981; Hama personal communication) also show the approximate positions of the genes for Rep (replication), Inc (incompatibility), and Sog (suppression of dnaG) as well as Ibf, Imm, and Cib phenotypes on the cleavage map of the ColIb plasmid.Preliminary data were reported in the 1979 Annual Meeting of the Japan Molecular Biology Society (Uemura and Mizobuchi, Abst Ann Mol Biol Meet 1979, p 36)  相似文献   

12.
Summary A tif-1 umuC36 double mutant of Escherichia coli was constructed. It has been found that the umuC36 mutation prevents both increased spontaneous mutagenesis and enhanced reactivation of UV-irradiated , phenomena normally observed in the tif-1 strain grown at 42°C. When the plasmid pKM101 was introduced into tif-1 umuC36, an elevated spontaneous reversion rate of the his-4 mutation observed at 30°C was further increased 6-fold at 42°C. This was accompanied by a 10-fold increase in the ability of tif-1umuC36 containing pKM101 and grown before infection at 42°C to reactivate UV-irradiated .  相似文献   

13.
Summary The drug resistance plasmid pKM101 plays a major role in the Ames Salmonella/microsome carcinogen detecting system by enhancing chemical mutagenesis. It is shown that in Escherichia coli K-12 the plasmid pKM101 enhances both spontaneous and methyl methanesulfonate-caused reversion of an ochre mutation, bacterial survival after ultraviolet irradiation, and reactivation of ultraviolet-irradiated in unirradiated cells. All these effects are shown to be dependent on the recA + lexA+ genotype but not on the recB + recC+ or recF + genotypes. The recA lexA-dependence of the plasmid-mediated repair and mutagenesis suggests an interaction with the cell's inducible error-prone repair system. The presence of pKM101 is shown to cause an additional increase in methyl methanesulfonate mutagenesis in a tif mutant beyond that caused by growth at 42°. The presence of the plasmid raises the level of the Weigle-reactivation curve for the reactivation of ultraviolet-irradiated in E. coli and causes a shift of the maximum to a higher UV fluence. These observations suggest that pKM101 does not exert its effects by altering the regulation of the cell's error-prone repair system but rather by supplying a mechanistic component or components.  相似文献   

14.
The mutability induced by dioxidine in E. coli cells has been shown to be stringently dependent on a function of chromosomal umuC+ gene. Suppression of an umuC mutation by plasmids pKM101 or ColIb, restoring the dioxidine induced mutability, proves the possibility of umuC gene functional complementation by the plasmid muc+ genes.  相似文献   

15.
Summary The host-controlled K restriction of unmodified phage was 10-100-fold alleviated in the wild-type strain E. coli K12, carrying plasmid pKM101 of incompability group N. pKM101-mediated release of K restriction was also observed in lexA -, recA -, and recB - strains of E. coli K12. By restriction mapping Tn5 insertions in pKM101, which reduced pKM101-mediated alleviation of restriction, were shown to be located within the BglIIB fragment approximately 11 kb anticlockwise from the RI site of pKM101. We have termed the gene(s) promoting the alleviation of K restriction of phage ard (alleviation of restriction of DNA). It was shown (1) that ard function affected only the EcoK restriction system and not the EcoB, EcoRI, EcoRIII, or EcoPI system, (2) ard gene(s) did not mediate EcoK type modification of DNA and did not increase the modification activity of the EcoK system in a way similar to that observed with gene ral of bacteriophage .  相似文献   

16.
Summary pKM101, a plasmid R factor of the N compatibility group increases methylmethane sulfonate mutagenesis and diminishes UV-killing in recA + lex + and recA + lex strains, but not in recA lex + strains. The induction of a reclex dependent colicin is not present in lex strains carrying the pKM101 factor. These facts indicate that pKM101 acts through an error-prone DNA repair system, which is recA + dependent, but not lex + dependent.This paper is published on the occasion of Dr. C. Callerio's seventy-fifth birthday  相似文献   

17.
We performed three types of experiments to test the hypothesis that abortive infection of T5 bacteriophage in Escherichia coli (ColIb+) is due to internally released colicin. (i) We measured the sensitivity of cells to colicin under a variety of conditions and then looked at the plating efficiency of T5 in ColIb+ cells under these same conditions. Cells grown at 42 degrees C or with hexanol had a reduced sensitivity to externally added colicin and an increased efficiency for T5 when the ColIb plasmid was present in the infected cells. Phage growth was far from normal, however. (ii) We measured the colicin sensitivity of a mutant bacterium that grew T5 normally even in the presence of the ColIb plasmid and measured the plating efficiency of T5 on another mutant that was colicin tolerant. Here again, the correlation between colicin activity and inhibition of phage replication was not complete. (iii) We looked for colicin-negative plasmid mutants and tested the ability of cells containing these plasmids to support the growth of T5. These experiments used Tn5, a kanamycin resistance transposon, as the mutagen. All possible combinations of colicin production and phage inhibition were found, including mutants that produced no colicin but still inhibited phage production.  相似文献   

18.
A mutant of Escherichia coli K-12, IB10 carrying the ts10 mutation has been isolated. The mutation affects replication and inheritance of pKM101 plasmid. Incubation of the mutant under non-selective conditions of 42 degrees C resulted in the formation of R-cell population. The frequency of temperature-independent clones was 2,1 X 10(-5). The defect of pKM101 replication was shown to result in growth inhibition of host cells at a non-permissive temperature. The host growth only started after elimination of the plasmid. The mechanisms are likely to exist governing the participation of plasmid gene products in processes related to host growth. The influence of ts10 mutation on replication of other plasmids was studied. It was established that ts10 did not affect replication of R6K, RP4 and Flac+ plasmids. However, replication of R15, R205 as well as of pKM101 plasmid stopped under conditions of non-permissive temperature in IB10 mutant. Obviously, ts10 mutation results in defective replication of plasmids only belonging to the N-incompatibility group (IncPN). It is shown that R6K, RP4, Flac+ plasmids are not able to correct pKM101 replication in the mutant at 42 degrees C.  相似文献   

19.
An Escherichia coli strain bearing the dnaQ49 mutation, which results in a defective s subunit of DNA polymerase III, and carrying the lexA71 mutation, which causes derepression of the SOS regulon, is totally unable to maintain high-copy-number plasmids containing the umuDC operon. The strain is also unable to maintain the pAN4 plasmid containing a partial deletion of the umuD gene but retaining the wild-type umuC gene. These results suggest that a high cellular level of UmuC is exceptionally harmful to the defective DNA polymerase III of the dnaQ49 mutant. We have used this finding as a basis for selection of new plasmid umuC mutants. The properties of two such mutants, bearing the umuC61 or umuC95 mutation, are described in detail. In the umuC122:: Tn 5 strain harbouring the mutant plasmids, UV-induced mutagenesis is severely decreased compared to that observed with the parental umuDC + plasmid. Interestingly, while the frequency of UV-induced GC AT transitions is greatly reduced, the frequency of AT TA transversions is not affected. Both mutant plasmids bear frameshift mutations within the same run of seven A residues present in umuC +; in umuC61 the run is shortened to six A whereas in umuC95 is lengthened to eight A. We have found in both umuC61 and umuC95 that translation is partially restored to the proper reading frame. We propose that under conditions of limiting amounts of UmuC, the protein preferentially facilitates processing of only some kinds of UV-induced lesions.  相似文献   

20.
A screening procedure was developed for identifying mutants of the plasmid pKM101 no longer capable of enhancing mutagenesis. The test was based on the large pKM101-mediated increase in the number of Gal+ papillae observed on colonies of Salmonella typhimurium gal mutants plated on tetrazolium-galactose plates in the presence of a mutagen. The pKM101 mutant plasmids transferred normally, were stably maintained in cells, caused normal levels of ampicillin resistance, and still imparted sensitivity to phage Ike to their hosts. However, the pKM101 mutants had lost the ability to (i) enhance the reversion of both point and frameshift mutations, (ii) protect the cells against killing by UV irradiation, (iii) increase the spontaneous reversion rates of point mutations, (iv) enhance plasmid-mediated reactivation of UV-irradiated phage P22, (v) enhance Weigle reactivation. One pKM101 mutant with different properties from the others was identified by its increased spontaneous mutator effect. It is suggested that pKM101 amplifies the activity of the inducible error-prone repair systems in bacteria and that this is the function of pKM101 in the Ames Salmonella tester strains used for detection of carcinogens as mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号