首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips and 1-year-old seedlings) of eastern cottonwoods (Populus deltoides Bartr.), and (2) to determine climatic and physiological driving variables at the Carswell Air Force Base in central Texas, USA. Trichloroethylene (TCE) was detected in shallow (2 to 3 m) groundwater in the early 1980s. Cottonwood whips and 1-year-old potted seedlings were planted in two separate 0.15-ha plantations in spring 1996. Sapflow gauges determined sapflow on 14 to 16 trees in May, June, July, August, and October 1997. Without adjusting for differences in tree size, sapflow rates were greater for 1-year-old trees than whips (peak values were 0.75 and 0.53 kg hr-1 tree-1, respectively). When adjusted for tree size, the pattern reversed, with whips having significantly greater sapflow rates than 1-year-old trees (peak values were 0.053 and 0.045 kg cm-2 hr-1, respectively). Temporal variation (diurnal and seasonal) in sapflow rates was principally related to VPD, solar radiation, and leaf conductance. Extrapolating to the stand and across the growing season, the plantations transpired ~25 cm of water. Early attainment of high levels of transpiration indicates that the stands will transpire considerably more water as leaf area and root exploitation increases with stand development.  相似文献   

2.
树干液流对环境变化响应研究进展   总被引:4,自引:0,他引:4  
张雷  孙鹏森  刘世荣 《生态学报》2009,29(10):5600-5610
随着大气中CO2浓度和其它温室气体的上升,预计全球和区域尺度的温度会增加,由于增温导致地球上一些地区降水增加,一些地区可能面临干旱的加剧.要分析气候、环境变化对植被的影响,需要深入了解植被和大气之间能量、水汽和CO2交换,蒸腾是这个交换过程的一个重要组成部分,是水分和能量离开森林生态系统的主要途径.目前,树干液流测定技术已经发展得比较成熟,能比较可靠的估计整树蒸腾,逐步被应用于研究树木水分利用对环境变化的响应.介绍比较成熟的树木(林分)蒸腾估算方法,就树木(林分)水分利用对环境变化响应研究中的几个热点问题进行了总结:(1) 大气中CO2浓度升高对树木水分利用、气孔导度和冠层结构的影响,环境条件决定树木水分利用对CO2的响应幅度.(2) 树木蒸腾对降雨的响应类型,降雨格局改变导致的土壤干旱对林分蒸腾的影响.(3) 树体储存水的生理意义.随着液流技术的发展和推广,其作为一种科学研究的技术与手段将会受到更多学者的重视,也必将推进树木水分利用对环境变化响应的研究.  相似文献   

3.
We show that sapflow is a useful tool for studies of water fluxes in forest ecosystems, because (i) it gives access to the spatial variability within a forest stand, (ii) it can be used even on steep slopes, and (iii) when combined with eddy correlation measurements over forests, it allows separation of individual tree transpiration from the total water loss of the stand. Moreover, sapflow techniques are quite easy to implement. Four sapflow techniques currently coexist, all based on heat diffusion in the xylem. We found a good agreement between three of these techniques. Most results presented here were obtained using the radial flow meter (Granier 1985). Tree sapflow is computed as sap flux density times sapwood area. To scale up from trees to a stand, measurements have to be made on a representative sample of trees. Thus, a number of trees in each circumference class is selected according to the fraction of sapwood they represent in the total sapwood area of the stand. The variability of sap flux density among trees is usually low (CV. 10–15%) in close stands of temperate coniferous or deciduous forests, but is much higher (35–50%) in a tropical rain forest. It also increases after thinning or during a dry spell. A set of 5–10 sapflow sensors usually provides an accurate estimate of stand transpiration. Transpiration measured on two dense spruce stands in the Vosges mountains (France) and one Scot's pine plantation in the Rhine valley (Germany) showed that maximum rate was related to stand LAI and to local climate. Preliminary results comparing the sapflow of a stand of Pinus banksiana to the transpiration of large branches, as part of the BOREAS programme in Saskachewan, Canada showed a similar trend. For modelling purposes, tree canopy conductance (gc) was calculated from Penman-Monteith equation. In most experiments, calculated canopy conductance was dependent on global radiation (positive effect) and on vapour pressure deficit (negative effect) in the absence of other limiting factors. A comparison of the vapour pressure deficit response curves of gc for several tree species and sites showed only small differences among spruce, oak and pine forests when including understorey. Tropical rainforests exhibited a similar behaviour.  相似文献   

4.
樱桃冠层导度特征及模拟   总被引:1,自引:0,他引:1  
为了揭示樱桃冠层蒸腾、冠层导度对环境因子的响应规律,评价Jarvis模型在樱桃冠层尺度上应用的适用性,利用Granier热消散式探针连续监测了北京四季青果林所试验地3年生盆栽樱桃(Prunus avium L.)4-8月份蒸腾动态变化,同步监测了气象与土壤水分数据。以实测液流为基础,利用Penman-Monteith方程反推方法获取了长期连续冠层导度,在分析樱桃冠层蒸腾、冠层导度的动态变化规律的基础上,采用十字交叉法对多元回归模型与Jarvis模型进行参数率与误差分析,结果显示盆栽樱桃冠层蒸腾规律性强、时滞效应小,不同辐射条件下,冠层导度随水汽压亏缺增加呈负指数函数下降趋势,采用水汽压亏缺、光合有效辐射、气温的不同组合方式构建了多元回归和Jarvis冠层模型,模拟结果显示Jarvis模型精度高于多元回归模型,环境因子对模型精度的影响程度依次为:水汽压亏缺光合有效辐射气温,考虑了水汽压亏缺和太阳辐射的Jarvis模型精度最高,最低相对误差仅为12.12%,均方根误差为0.271。  相似文献   

5.
In this study we evaluated daily whole plant transpiration and net photosynthetic rates in Stipa tenacissima L. (Poaceae) tussocks of different sizes subjected to three levels of soil moisture. The crown architecture of 12 tussocks was reconstructed with the 3D computer model Yplant taking into account the morphology and physiology of the leaves determined at different soil moisture levels. We also calculated whole plant transpiration by extrapolating leaf transpiration in different senescence conditions measured with a diffusion porometer. This extrapolated transpiration overestimated transpiration, particularly when the soil moisture level was high (>15% of volumetric soil water content). At this high level of soil moisture, large tussocks (>60 cm in diameter), which were sexually mature and had a large leaf surface area, were the most efficient with regard to daily water use efficiency (whole plant net photosynthesis/whole plant transpiration). Whole plant water use efficiency decreased with tussock size primarily because small tussocks exhibited high transpiration rates. Small tussocks were more sensitive to soil drying than large and intermediate ones, presenting a faster rate of leaf senescence as water deficit increased. Leaf acclimation to irradiance, which was significantly influenced by the degree of mutual shading among neighbouring leaves, along with the ontogeny of the tussock and its effect upon leaf senescence were found to be the main mechanisms involved in the different responses to water limitations found in whole plant gas exchange variables. Our results show that the size of each individual plant must be taken into account in processes of scaling-up of carbon gain and transpiration from leaf to stand, as this is a particularly relevant aspect in estimating water use by semiarid vegetation.  相似文献   

6.
We determined the stable carbon isotope composition (δ1.3C) of cellulose extracted from early and late wood in Douglas fir [Pseudotsuga menziexii (Mirb.) Franco] tree rings. Data were obtained for the period 1962 to 1981, at the start of which the trees were 20 years old. A water balance model was used to calculate daily stand transpiration and water deficit. The model incorporates site factors (soil water availability, slope and aspect) and environmental variables (solar radiation, air temperature and rainfall). There was far greater variability in late wood than in early wood δ1.3C. In wet years, late wood δ1.3C was significantly lighter (by as much as 2δ) than early wood δ1.3C but in dry years this difference was reversed. Differences between spring and summer cumulative transpiration accounted for almost 60δ of the variability in differences between early and late wood δ1.3C. We found excellent correspondence between summer cumulative transpiration and late wood δ1.3C, with estimates of transpiration accounting for up to 93% of the variability in δ1.3C. Correlations between early wood δ1.3C and spring transpiration were generally poor (r2<0.4), but we were able to identify those exceptional years in which there had been a very dry spring. Our results indicate that, while tree ring δ1.3C correlates reasonably well with basal area increment, it is a far better indicator of inter- and intra-annual variability in water availability than radial growth.  相似文献   

7.
By incorporating Ball-Berry model of stomatal conductance into the models of photosynthesis and transpiration, a model of leaf water use efficiency (WUE) as affected by several environmental variables [irradiance (Ⅰ), vapor pressure deficit (VPD) and atmospheric CO2 concentration (Ca) ] was constructed. Because the environmental variables influenced the photosynthetic rate and transpiration rate in different ways, the changes of leaf WUE with these factors were quite complicated. The rates of photosynthesis and transpiration of wheat leaves were also measured in the phytotron where the environmental variables were kept within certain ranges, and leaf WUE was calculated therefrom. The results of simulation fit quite well with the measurements except at high Ca.  相似文献   

8.
根据现有的光合作用和蒸腾作用的模型,利用Ball-Berry 的气孔导度模型,将叶片的光合作用模型和蒸腾作用模型结合起来,建立了光强(I)、叶片-大气水汽饱和差(VPD)和大气CO2 浓度(Ca)等环境因子对小麦叶片水分利用效率(WUE)影响的模型。由于这3 种环境因子对光合、蒸腾的影响方式上的差异,作为两者之比的叶片WUE随各环境因子的变化出现复杂的图景,同时,在人工气候箱内分别于这3 个因子变化时对光合、蒸腾的变化作了测定,计算了叶片的W UE。测定结果与模拟结果的对比表明,在多数情况下两者符合程度良好,但在高Ca下有较大的偏离  相似文献   

9.
黄土高原半干旱区侧柏(Platycladus orientalis)树干液流动态   总被引:2,自引:0,他引:2  
应用热扩散式树干茎流计(TDP)于2008年4~10月对黄土高原安塞县侧柏人工林树干液流速率进行了连续测定,并对周围气象、土壤水分等多个环境因子进行了同步测定.结果表明:侧柏在不同月份晴天树干液流速率变化具有明显的昼夜节律性,呈单峰曲线;且各月液流速率日均值受土壤供水水平限制总体上呈下降趋势,即4月份最大,为0.00135 cm · s-1;10月份最小为0.00011cm · s-1;树干液流速率与光合有效辐射、大气温度、水汽压差呈极显著正相关,与相对湿度呈负相关,其相关程度:光合有效辐射>水汽压差>大气温度>相对湿度,并可用线性表达式来估算;侧柏边材面积和地径呈幂指数关系,并以此结合密度估算出样地侧柏人工林的边材面积为4.65m2,最终估算出侧柏人工林生长季总耗水量为1159.6 t · hm-2.  相似文献   

10.
永定河沿河沙地杨树人工林蒸腾耗水特征及其环境响应   总被引:7,自引:0,他引:7  
杨树是我国北方最常见的人工造林树种之一。一直以来在干旱、半干旱地区,速生杨树用材林和生态防护林的耗水问题备受关注。研究不同生长发育阶段杨树人工林蒸腾耗水及其对各环境因子的响应对于实现杨树人工林可持续经营具有重要价值。采用树干液流法结合微气象观测系统和土壤水分观测,在2010—2011年对位于北京南郊大兴林场、林龄为13a的杨树人工林林分蒸腾耗水和环境因子进行了同步观测,以期能够探究该林分的蒸腾耗水及其对环境因子的响应。结果表明,树干液流密度(Js)日变化呈明显的单峰曲线,单株样木耗水量随着胸径的增加而增大。在半小时尺度上,单株树木Js与浄辐射(Rn)、饱和水气压差(VPD)存在时滞,这种时滞现象随土壤水分条件不同而变化。林分蒸腾耗水总量在2010和2011年生长季内分别为113.7 mm和174.8 mm,占同期降雨的30.2%和36.9%,与该杨树人工林前期研究相比,随着林龄的增长2010—2011年的蒸腾量呈减小趋势。日尺度上,该人工林蒸腾耗水与净辐射(Rn)、饱和水汽压差(VPD)和土壤体积含水率(SWC)显著相关,在不同土壤水分条件下Rn与林分蒸腾的相关关系发生变化,而VPD过高会对林分蒸腾产生抑制。林分月蒸腾和年总蒸腾主要取决于同期降雨量,因此,降雨年际差异较大时,蒸腾的年际变化也相应较大。  相似文献   

11.
应用Granier热消散探针,长期监测华南丘陵地马占相思(Acacia mangium)林14棵样树的树干液流(Sap flow),由此计算整树和林段的蒸腾速率,结合同步记录的环境因子,求算冠层平均气孔导度(Gc)。Granier探针的灵敏度较高,能精确测定即使是微弱的液流活动。观测结果显示,树木个体之间的液流密度(Js)和整树蒸腾(Et)受树形特征影响较大。马占相思林径级大的树木个体数较少,但占据林段边材总面积和林段蒸腾的比例较大。JsEt的日变化主要受光合有效辐射(Qo)和空气水蒸气压亏缺(D)的控制,土壤含水量(θ)对较大胸径树木Et的影响大于胸径较小的树木,个体之间JsEt的差异随θ的下降而缩小。一年中,林段蒸腾(E)在光照和水热条件较好的7月最高,9~12月,由于土壤水分供应的减少致使E值降低,ED的敏感性下降。Gc与主要环境因子的关系与E相似,如果θ长期偏低,Gc会明显下降,是造成E降低的主要原因。成熟马占相思林在光照充足、水热条件较好的情况下的蒸腾活动旺盛,但对土壤水分胁迫的忍受力较低。  相似文献   

12.
Páramos are high elevation tropical ecosystems in northern Andes, with large water yield and water regulation. One of the main and representative species growing in these páramos is the genus Espeletia, known as frailejones. There is a lack of knowledge of Espeletia ecophysiology, maybe due to its unusual anatomical modifications and the specific climatic conditions of these ecosystems. Therefore, it is important to determine the relationships between the anatomical modifications of Espeletia, its physiological functioning, and its contribution to the ecohydrologic functioning of páramos. Consequently, we studied the physiology of frailejones in two Colombian páramos, focused on the identification of conductive tissues inside the stems, calculated the age, and measured sapflow, using the heat ratio method. Results show that Espeletia spp. have a central pith that increases with height, as the size of secondary xylem decreases. Frailejones respond quickly to the changing conditions of weather factors controlling transpiration such as solar radiation, temperature, and fog presence. However, although environmental factors favor transpiration, the sapflow tends to decrease—a particular behavior of the Espeletia transpiration processes—since this occurs chaotically over time, including sapflow at night. The transformation of sapflow velocity to depth of water in a basin shows that the water lost through their transpiration is very low, which contributes to the high runoff ratio of páramo ecosystems. For the first time, we determine by radiocarbon the real ages of three E. hartwegiana, and their mean growth rates to range between 3.8 and 6.9 cm year?1.  相似文献   

13.
半干旱区城市环境下油松林分蒸腾特征及其影响因子   总被引:2,自引:0,他引:2  
在城市环境下,由于不透水地面面积的增加,土壤-植物-大气之间水汽循环减弱,水汽调节能力差,因而研究城市树木蒸腾对环境因子的响应对于城市进行合理的水汽调节具有重要意义。于2017年生长季,在内蒙古呼和浩特市区树木园内选择58年生油松(Pinus tabulaeformis Carr.)作为研究树种,采用热扩散法测定其树干液流,并同步监测气象因子和土壤含水量变化,利用彭曼公式计算冠层气孔导度。结果表明:(1)生长季内,油松林分蒸腾存在明显日、月变化,晴天天气下林分蒸腾日变化呈单峰曲线,月林分蒸腾量5月最大,其次是7月、8月、6月和9月,分别为20.96、19.89、18.09、17.25 mm和7.49 mm。(2)油松林分蒸腾与饱和水汽压差、太阳总辐射、土壤含水量和风速均存在极显著相关关系(P0.01),太阳总辐射、饱和水汽压差和土壤含水量是影响林分蒸腾的主要环境因子(R~2=0.47、R~2=0.31和R~2=0.16),风速对林分蒸腾的影响程度最小(R~2=0.12);不同降雨量对林分蒸腾的影响作用不同,10 mm以上的日降雨量对油松林分蒸腾作用明显。(3)除环境因子外,油松叶片气孔通过响应环境变化控制蒸腾作用,当饱和水汽压差1.5 kPa时,叶片气孔对饱和水汽压差的响应更敏感;当太阳总辐射250 W/m~2时,叶片气孔对蒸腾起促进作用,超过该阈值,叶片气孔关闭从而抑制树木蒸腾。  相似文献   

14.
Forest management presents challenges to accurate prediction of water and carbon exchange between the land surface and atmosphere, due to its alteration of forest structure and composition. We examined how forest species types in northern Wisconsin affect landscape scale water fluxes predicted from models driven by remotely sensed forest classification. A site‐specific classification was developed for the study site. Using this information and a digital soils database produced for the site we identified four key forest stand types: red pine, northern hardwoods, aspen, and forested wetland. Within these stand types, 64 trees representing 7 species were continuously monitored with sap flux sensors. Scaled stand‐level transpiration from sap flux was combined with a two‐source soil evaporation model and then applied over a 2.5 km × 3.0 km area around the WLEF AmeriFlux tower (Park Falls, Wisconsin) to estimate evapotranspiration. Water flux data at the tower was used as a check against these estimates. Then, experiments were conducted to determine the effects of aggregating vegetation types to International Geosphere– Biosphere Program (IGBP) level on water flux predictions. Taxonomic aggregation resulting in loss of species level information significantly altered landscape water flux predictions. However, daily water fluxes were not significantly affected by spatial aggregation when forested wetland evaporation was included. The results demonstrate the importance of aspen, which has a higher transpiration rate per unit leaf area than other forest species. However, more significant uncertainty results from not including forested wetland with its high rates of evaporation during wet summers.  相似文献   

15.
The significance of soil water redistribution facilitated by roots (an extension of "hydraulic lift", here termed hydraulic redistribution) was assessed for a stand of Artemisia tridentata using measurements and a simulation model. The model incorporated water movement within the soil via unsaturated flow and hydraulic redistribution and soil water loss from transpiration. The model used Buckingham-Darcy's law for unsaturated flow while hydraulic redistribution was developed as a function of the distribution of active roots, root conductance for water, and relative soil-root (rhizosphere) conductance for water. Simulations were conducted to compare model predictions with time courses of soil water potential at several depths, and to evaluate the importance of root distribution, soil hydraulic conductance and root xylem conductance on transpiration rates and the dynamics of soil water. The model was able to effectively predict soil water potential during a summer drying cycle, and the rapid redistribution of water down to 1.5 m into the soil column after rainfall events. Results of simulations indicated that hydraulic redistribution could increase whole canopy transpiration over a 100-day drying cycle. While the increase was only 3.5% over the entire 100-day period, hydraulic redistribution increased transpiration up to 20.5% for some days. The presence of high soil water content within the lower rooting zone appears to be necessary for sizeable increases in transpiration due to hydraulic redistribution. Simulation results also indicated that root distributions with roots concentrated in shallow soil layers experienced the greatest increase in transpiration due to hydraulic redistribution. This redistribution had much less effect on transpiration with more uniform root distributions, higher soil hydraulic conductivity and lower root conductivity. Simulation results indicated that redistribution of water by roots can be an important component in soil water dynamics, and the model presented here provides a useful approach to incorporating hydraulic redistribution into larger models of soil processes.  相似文献   

16.
The rates of transpiration from a mature Eucalyptus globulus Labill. stand in Portugal were evaluated during a drying period of the spring-summer 1994. Transpiration was measured by the Granier sap flow method and estimated by the Penman-Monteith model. During the experimental period daily transpiration varied between 3.64 and 0.50 mm day−1. For high-transpiration days, a good agreement was observed between Penman-Monteith estimates and sap flow measurements, both on a daily and on an hourly basis. However, for low-transpiration days, the Penman-Monteith model overestimated transpiration in comparison with the sap flow method. The diurnal variation of sap flow was then smoother and lagged behind the estimates of the Penman-Monteith model. E. globulus showed an efficient control of transpiration losses during dry periods through a progressive stomatal closure. As soil moisture deficit increased, the daily maximum stomatal conductance decreased from 0.46 to 0.14 cm s−1. The results also show that, on a seasonal basis, stomatal conductance and daily transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture content. Received: 26 January 1996 / Accepted: 20 October 1996  相似文献   

17.
Short‐rotation coppice (SRC) has great potential for supplying biomass‐based heat and energy, but little is known about SRC's ecological footprint, particularly its impact on the water cycle. To this end, we quantified the water use of a commercial scale poplar (Populus) SRC plantation in East Flanders (Belgium) at tree and stand level, focusing primarily on the transpiration component. First, we used the AquaCrop model and eddy covariance flux data to analyse the different components of the stand‐level water balance for one entire growing season. Transpiration represented 59% of evapotranspiration (ET) at stand scale over the whole year. Measured ET and modelled ET were lower as compared to the ET of reference grassland, suggesting that the SRC only used a limited amount of water. Secondly, we compared leaf area scaled and sapwood area scaled sap flow (Fs) measurements on individual plants vs. stand scale eddy covariance flux data during a 39‐day intensive field campaign in late summer 2011. Daily stem diameter variation (?D) was monitored simultaneously with Fs to understand water use strategies for three poplar genotypes. Canopy transpiration based on sapwood area or leaf area scaling was 43.5 and 50.3 mm, respectively, and accounted for 74%, respectively, 86%, of total ecosystem ET measured during the intensive field campaign. Besides differences in growth, the significant intergenotypic differences in daily ?D (due to stem shrinkage and swelling) suggested different water use strategies among the three genotypes which were confirmed by the sap flow measurements. Future studies on the prediction of SRC water use, or efforts to enhance the biomass yield of SRC genotypes, should consider intergenotypic differences in transpiration water losses at tree level as well as the SRC water balance at stand level.  相似文献   

18.
The main determinants of soil respiration were investigated in 11 forest types distributed along an altitudinal and thermal gradient in the southern Italian Alps (altitudinal range 1520 m, range in mean annual temperature 7.8°C). Soil respiration, soil carbon content and principal stand characteristics were measured with standardized methods. Soil CO2 fluxes were measured at each site every 15–20 days with a closed dynamic system (LI‐COR 6400) using soil collars from spring 2000 to spring 2002. At the same time, soil temperature at a depth of 10 cm and soil water content (m3 m?3) were measured at each collar. Soil samples were collected to a depth of 30 cm and stones, root content and bulk density were determined in order to obtain reliable estimates of carbon content per unit area (kg C m?2). Soil respiration and temperature data were fitted with a simple logistic model separately for each site, so that base respiration rates and mean annual soil respiration were estimated. Then the same regression model was applied to all sites simultaneously, with each model parameter being expressed as a linear function of site variables. The general model explained about 86% of the intersite variability of soil respiration. In particular, soil mean annual temperature explained the most of the variance of the model (0.41), followed by soil temperature interquartlile range (0.24), soil carbon content (0.16) and soil water content (0.05).  相似文献   

19.
Daily patterns of stomatal conductance (gs), xylem pressure potential (P) and canopy microclimatic variables were recorded on 11 sample days as part of a one-year study of the water use of Eucalyptus grandis Hill ex Maiden in the eastern Transvaal, South Africa. Measured gs was found to be largely controlled by quantum flux density (Q) and ambient vapour pressure deficit (D). Canopy conductance (gc) was determined for hourly intervals using gs measurements and leaf areas in four different canopy levels. A simple model was constructed to allow the prediction of gc and transpiration from Q, D and season of year. The model was used to estimate transpiration rates from 10 trees in a later study of similarly-aged E. grandis trees, in which sap flow in each tree was measured using the heat pulse velocity (HPV) technique. Five of the trees were monitored on a summer day and five on a winter day. Correspondence between HPV sap flow and modelled transpiration was good for the summertime comparisons, but measured winter-time sap flow rates were underestimated by the model, especially under conditions of high sap flow. The discrepancy is believed to result from having insufficient data from the conductance study to describe the response of gs to relatively high D in winter. Marked variation in transpiration per unit leaf area indicates that a relatively large number of trees must be sampled for the HPV technique to be used to obtain a mean rate for an entire stand in winter.  相似文献   

20.
We investigated the water balances of two beech stands (Fagus sylvatica L.) on opposite slopes (NE, SW) of a narrow valley near Tuttlingen in the southern Swabian Jura, a low mountain range in Southwest Germany. Our analysis combines results from continuous measurements of forest meteorological variables significant to the forest water balance, stand transpiration (ST) estimates from sap flow measurements, and model simulations of microclimate and water fluxes. Two different forest hydrological models (DNDC and BROOK90) were tested for their suitability to represent the particular sites. The investigation covers the years 2001–2007. Central aims were (1) to evaluate meteorological simulations of variables below the forest canopy, (2) to evaluate ST, (3) to quantify annual water fluxes for both beech stands using the evaluated hydrological models, and (4) to analyse the model simulations with regard to assumptions inherent in the respective model. Overall, both models were very well able to reproduce the observed dynamics of the soil water content in the uppermost 30 cm. However, the degree of fit depended on the year and season. The comparison of experimentally determined ST within the beech stand on the NE-slope during the growing season of 2007 with simulated transpiration did not yield a reliable statistical relationship. The simulation of water fluxes for the beech stand on the NE- and SW-slopes showed similar results for vegetation-related fluxes with both models, but different with respect to runoff and percolation flows. Overall, the higher evaporation demand on the warmer SW-slope did not lead to a significantly increased drought stress for the vegetation but was reflected mainly in decreased water loss from the system. This finding is discussed with regard to potential climate change and its impact on beech growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号