首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Butyrate is a preferred energy source for colonic epithelial cells and is thought to play an important role in maintaining colonic health in humans. In order to investigate the diversity and stability of butyrate-producing organisms of the colonic flora, anaerobic butyrate-producing bacteria were isolated from freshly voided human fecal samples from three healthy individuals: an infant, an adult omnivore, and an adult vegetarian. A second isolation was performed on the same three individuals 1 year later. Of a total of 313 bacterial isolates, 74 produced more than 2 mM butyrate in vitro. Butyrate-producing isolates were grouped by 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphism analysis. The results indicate very little overlap between the predominant ribotypes of the three subjects; furthermore, the flora of each individual changed significantly between the two isolations. Complete sequences of 16S rDNAs were determined for 24 representative strains and subjected to phylogenetic analysis. Eighty percent of the butyrate-producing isolates fell within the XIVa cluster of gram-positive bacteria as defined by M. D. Collins et al. (Int. J. Syst. Bacteriol. 44:812–826, 1994) and A. Willems et al. (Int. J. Syst. Bacteriol. 46:195–199, 1996), with the most abundant group (10 of 24 or 42%) clustering with Eubacterium rectale, Eubacterium ramulus, and Roseburia cecicola. Fifty percent of the butyrate-producing isolates were net acetate consumers during growth, suggesting that they employ the butyryl coenzyme A-acetyl coenzyme A transferase pathway for butyrate production. In contrast, only 1% of the 239 non-butyrate-producing isolates consumed acetate.  相似文献   

2.
Lists of abbreviations for genus names of bacteria are expanded to accommodate 103 new entries which are names that have been validity published since the publication of an updated list by Rogosa et al. in 1986 (Int. J. Syst. Bacteriol. 36:464-472). These abbreviations are provided to serve the need for appropriate codified abbreviations for use in processing or indexing of information on computers.  相似文献   

3.
The final steps in butyrate synthesis by anaerobic bacteria can occur via butyrate kinase and phosphotransbutyrylase or via butyryl-coenzyme A (CoA):acetate CoA-transferase. Degenerate PCR and enzymatic assays were used to assess the presence of butyrate kinase among 38 anaerobic butyrate-producing bacterial isolates from human feces that represent three different clostridial clusters (IV, XIVa, and XVI). Only four strains were found to possess detectable butyrate kinase activity. These were also the only strains to give PCR products (verifiable by sequencing) with degenerate primer pairs designed within the butyrate kinase gene or between the linked butyrate kinase/phosphotransbutyrylase genes. Further analysis of the butyrate kinase/phosphotransbutyrylase genes of one isolate, L2-50, revealed similar organization to that described previously from different groups of clostridia, along with differences in flanking sequences and phylogenetic relationships. Butyryl-CoA:acetate CoA-transferase activity was detected in all 38 strains examined, suggesting that it, rather than butyrate kinase, provides the dominant route for butyrate formation in the human colonic ecosystem that contains a constantly high concentration of acetate.  相似文献   

4.
The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation.  相似文献   

5.
肠道内产丁酸细菌及其产物丁酸生理功能的研究进展   总被引:2,自引:0,他引:2  
产丁酸细菌是利用糖类发酵产生丁酸的一类细菌,代表种是丁酸梭菌。在动物及人类肠道内存在的产丁酸细菌主要是梭菌属、柔嫩梭菌属、罗斯式菌属、真菌属及丁酸弧菌属。本文一方面介绍部分肠道内产丁酸细菌的种类、特点及膳食纤维的摄入和肠道益生菌对产丁酸细菌的影响,另一方面对其主要代谢产物丁酸在体内的生理功能进行探讨,以期为产丁酸细菌的应用及产品开发提供理论依据。  相似文献   

6.
The causative agent of Lyme disease, Borrelia burgdorferi, was first identified by Burgdorfer et al. in 1982 (W. Burgdorfer, A. G. Barbour, S. F. Hayes, J. L. Benach, E. Grunwaldt, and J. P. Davis, Science 216:1317-1319, 1982) and was isolated by Barbour et al. in 1983 (A. G. Barbour, W. Burgdorfer, S. E. Hayes, O. Peter, and A. Aeschlimann, Curr. Microbiol. 8:123-126, 1983). Since then, a large number of isolates have been collected, and there have been questions regarding the relationships among the various strains. Using genomic fingerprinting by an arbitrarily primed polymerase chain reaction, we resolved into three groups a collection of Eurasian and North American isolates of spirochetes that are generally categorized as B. burgdorferi. Group I strains have been identified in both North America and Eurasia, while strains belonging to Borrelia groups II and III have been found only in Eurasia. These same three groups have also been delineated by Baranton et al. (G. Baranton, D. Postic, I. Saint Girons, P. Boerlin, J.-C. Piffaretti, M. Assous, and P. A. D. Grimont, Int. J. Syst. Bacteriol. 42:370-375, 1992) by independent methods. Two isolates are distinct from all of the other strains in our collection but are clearly members of the genus Borrelia.  相似文献   

7.
16S rRNA-targeted oligonucleotide probes were designed for butyrate-producing bacteria from human feces. Three new cluster-specific probes detected bacteria related to Roseburia intestinalis, Faecalibacterium prausnitzii, and Eubacterium hallii at mean populations of 2.3, 3.8, and 0.6%, respectively, in samples from 10 individuals. Additional species-level probes accounted for no more than 1%, with a mean of 7.7%, of the total human fecal microbiota identified as butyrate producers in this study. Bacteria related to E. hallii and the genera Roseburia and Faecalibacterium are therefore among the most abundant known butyrate-producing bacteria in human feces.  相似文献   

8.
Butyrate is the preferred energy source for colonocytes and has an important role in gut health; in contrast, accumulation of high concentrations of lactate is detrimental to gut health. The major butyrate-producing bacterial species in the human colon belong to the Firmicutes. Eubacterium hallii and a new species, Anaerostipes coli SS2/1, members of clostridial cluster XIVa, are able to utilize lactate and acetate via the butyryl CoA : acetate CoA transferase route, the main metabolic pathway for butyrate synthesis in the human colon. Here we provide a mathematical model to analyse the production of butyrate by lactate-utilizing bacteria from the human colon. The model is an aggregated representation of the fermentation pathway. The parameters of the model were estimated using total least squares and maximum likelihood, based on in vitro experimental data with E. hallii L2-7 and A. coli SS2/1. The findings of the mathematical model adequately match those from the bacterial batch culture experiments. Such an in silico approach should provide insight into carbohydrate fermentation and short-chain fatty acid cross-feeding by dominant species of the human colonic microbiota.  相似文献   

9.
The group of butyrate-producing bacteria within the human gut microbiome may be associated with positive effects on memory improvement, according to previous studies on dementia-associated diseases. Here, fecal samples of four elderly Japanese diagnosed with Alzheimer’s disease (AD) were used to isolate butyrate-producing bacteria. 226 isolates were randomly picked, their 16S rRNA genes were sequenced, and assigned into sixty OTUs (operational taxonomic units) based on BLASTn results. Four isolates with less than 97% homology to known sequences were considered as unique OTUs of potentially butyrate-producing bacteria. In addition, 12 potential butyrate-producing isolates were selected from the remaining 56 OTUs based on scan-searching against the PubMed and the ScienceDirect databases. Those belonged to the phylum Bacteroidetes and to the clostridial clusters I, IV, XI, XV, XIVa within the phylum Firmicutes. 15 out of the 16 isolates were indeed able to produce butyrate in culture as determined by high-performance liquid chromatography with UV detection. Furthermore, encoding genes for butyrate formation in these bacteria were identified by sequencing of degenerately primed PCR products and included the genes for butyrate kinase (buk), butyryl-CoA: acetate CoAtransferase (but), CoA-transferase-related, and propionate CoA-transferase. The results showed that eight isolates possessed buk, while five isolates possessed but. The CoA-transfer-related gene was identified as butyryl-CoA:4-hydroxybutyrate CoA transferase (4-hbt) in four strains. No strains contained the propionate CoA-transferase gene. The biochemical and butyrate-producing pathways analyses of butyrate producers presented in this study may help to characterize the butyrate-producing bacterial community in the gut of AD patients.  相似文献   

10.
16S rRNA-targeted oligonucleotide probes were designed for butyrate-producing bacteria from human feces. Three new cluster-specific probes detected bacteria related to Roseburia intestinalis, Faecalibacterium prausnitzii, and Eubacterium hallii at mean populations of 2.3, 3.8, and 0.6%, respectively, in samples from 10 individuals. Additional species-level probes accounted for no more than 1%, with a mean of 7.7%, of the total human fecal microbiota identified as butyrate producers in this study. Bacteria related to E. hallii and the genera Roseburia and Faecalibacterium are therefore among the most abundant known butyrate-producing bacteria in human feces.  相似文献   

11.
Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.  相似文献   

12.
This minireview gives an updated and consolidated summary of taxonomic classification correlated with membrane phospholipid, glycolipid, and core lipid structural diversity within the family Halobacteriaceae. We also point out that the recently reported diversity in the membrane core lipid structure of a putative strain of Halobacterium (Halobacterium halobium strain IAM 13167) (Morita et al., Biosci. Biotechnol. Biochem., 62, 596-598, 1998) is not correct since the strain used by the authors has for some time been recognized not to be a member of the genus Halobacterium but a member of halobacteria group 2 (Grant and Larsen, Bergey's Manual of Systematic Bacteriology, Vol.3, pp. 2216-2233, 1989), which has recently been designated as a new genus, Natrinema (McGenity et al., Int. J. Syst. Bacteriol. 48, 1187-1196, 1998).  相似文献   

13.
An obligatory anaerobic, Gram-positive, rod-shaped organism was isolated from faeces of a healthy human donor. It was characterized using biochemical, phenotypic and molecular taxonomic methods. The organism produced acetate, lactate, and ethanol as the major products of glucose fermentation. The G + C content was 53 mol%. Based on comparative 16S rRNA gene sequencing, the unidentified bacterium is a member of the Clostridium subphylum of the Gram-positive bacteria, and most closely related to species of the Clostridium coccoides cluster (rRNA cluster XIVa) [M.D. Collins et al., The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations, Int. J. Syst. Bacteriol. 44 (1994) 812-826]. Clostridium bolteae and Clostridium clostridioforme were identified as the most closely related described species. A 16S rRNA sequence divergence value of > 3% suggested that the isolate represents a new species. This was also supported by the gyrase-encoding gyrB gene sequences. Based on these findings, we propose the novel bacterium from human faeces to be classified as a new species, Clostridium asparagiforme. The type strain of C. asparagiforme is N6 (DSM 15981 and CCUG 48471).  相似文献   

14.
Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [(13)C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates.  相似文献   

15.
To identify bacteria with potential for influencing gut health, 980 anaerobes were cultured from the swine intestinal tract and analyzed for butyrate production. Fifteen isolates in the order Clostridiales produced butyrate and had butyryl coenzyme A (CoA):acetate CoA transferase activity. Three of the isolates grew on mucin, suggesting an intimate association with host intestinal mucosa.  相似文献   

16.
Fluorescence in situ hybridization was used to quantitate bacteria growing in a three-stage continuous culture system inoculated with human faeces, operated at two system retention times (60 and 20 h). Twenty-three different 16S rRNA gene oligonucleotide probes of varying specificities were used to detect bacteria. Organisms belonging to genera Bacteroides and Bifidobacterium, together with the Eubacterium rectale/Clostridium coccoides group, the Atopobium, Faecalibacterium prausnitzii and Eubacterium cylindroides groups, as well as the segmented filamentous bacteria, the Roseburia intestinalis group and lactic acid bacteria, were all present in high numbers in the continuous culture system. Other groups and species such as Ruminococci and Enterobacteria also persisted in the model, though not always at levels that allowed reliable quantitation. Some organisms such as Streptococci and Corynebacteria, present in the faecal inoculum, did not colonize the system. Other probes specific for Eubacterium lentum and for members of the genus Desulfovibrio did not detect these organisms at any time. Short chain fatty acid production was always highest in vessel I of the continuous culture system, however, a marked increase in acetate formation and a reduction in butyrate production occurred when system retention time was reduced to 20 h, which correlated with reductions in the numbers of butyrate-producing Roseburia.  相似文献   

17.
Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.  相似文献   

18.
The effects of changes in the gut environment upon the human colonic microbiota are poorly understood. The response of human fecal microbial communities from two donors to alterations in pH (5.5 or 6.5) and peptides (0.6 or 0.1%) was studied here in anaerobic continuous cultures supplied with a mixed carbohydrate source. Final butyrate concentrations were markedly higher at pH 5.5 (0.6% peptide mean, 24.9 mM; 0.1% peptide mean, 13.8 mM) than at pH 6.5 (0.6% peptide mean, 5.3 mM; 0.1% peptide mean, 7.6 mM). At pH 5.5 and 0.6% peptide input, a high butyrate production coincided with decreasing acetate concentrations. The highest propionate concentrations (mean, 20.6 mM) occurred at pH 6.5 and 0.6% peptide input. In parallel, major bacterial groups were monitored by using fluorescence in situ hybridization with a panel of specific 16S rRNA probes. Bacteroides levels increased from ca. 20 to 75% of total eubacteria after a shift from pH 5.5 to 6.5, at 0.6% peptide, coinciding with high propionate formation. Conversely, populations of the butyrate-producing Roseburia group were highest (11 to 19%) at pH 5.5 but fell at pH 6.5, a finding that correlates with butyrate formation. When tested in batch culture, three Bacteroides species grew well at pH 6.7 but poorly at pH 5.5, which is consistent with the behavior observed for the mixed community. Two Roseburia isolates grew equally well at pH 6.7 and 5.5. These findings suggest that a lowering of pH resulting from substrate fermentation in the colon may boost butyrate production and populations of butyrate-producing bacteria, while at the same time curtailing the growth of Bacteroides spp.  相似文献   

19.
We used microsatellite fingerprinting and RAPD analysis to characterize 28 wild European strains of Saccharomyces paradoxus. In contrast to our results from a previous allozyme survey [Naumov et al. Int. J. Syst. Bacteriol. 47: 341-344 (1997a)], these methods revealed extensive genetic variation. The RAPD primers 5'AATCGGGCTG and 5'GGGTAACGCC and the microsatellite primer (GTG)5 yielded reproducible amplification patterns of sufficient clarity and variability to distinguish individual strains from the wild. UPGMA analysis tended to group the strains according to climatic and geographic origin. A comparative study of Ty1 sequence having multiple chromosomal location was also done. Each wild S. paradoxus isolate shows a unique hybridization pattern allowing discrimination to the strain level.  相似文献   

20.
Butyrate‐producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl‐CoA:acetate CoA‐transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty‐eight per cent of amplified sequences showed > 98% DNA sequence identity to CoA‐transferases from cultured butyrate‐producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate‐producing strains. Samples taken after ingestion of inulin showed significant (P = 0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl‐CoA:acetate CoA‐transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号