首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of FtsA and PBP3 proteins in the Escherichia coli septum.   总被引:32,自引:25,他引:7       下载免费PDF全文
Mutations in the ftsA gene of Escherichia coli conferred a higher resistance to lysis induced by penicillin or by a combination of cefsulodin and furazlocillin. The ftsA2 allele codes for an FtsA protein which is inactive at 42 degrees C but is able to regain its activity once it is transferred back to 30 degrees C; ftsA2 filaments formed at 42 degrees C in the presence of penicillin divided once the penicillin was removed and the temperature was lowered to 30 degrees C. Potential septation sites in the filaments of wild-type cells treated in the same way remained inactive. The binding of a radioactively labeled derivative of ampicillin to penicillin-binding protein 3 (PBP3) was significantly decreased in strain D-3, containing the mutant allele ftsA3, when the binding assay was performed at the restrictive temperature. A molecular species able to cross-react with an anti-PBP3 serum was nevertheless found to be present in the envelope of D-3 cells. These observations suggested that the FtsA protein, a protein with a structural and regulatory role in septation, and PBP3, a protein enzymatically active in the synthesis of murein for septation, interact with each other.  相似文献   

2.
Two types of Escherichia coli mutants tolerant to beta-lactam antibiotics were isolated. One is E. coli chi2452, which showed a tolerant response against beta-lactam antibiotics when grown at 42 degrees C, and the others are the mutants C-80 and C-254, selected from mutagenized E. coli chi1776 by cycles of exposure to ampicillin, cephaloridine, and starvation of the nutritionally required diaminopimelic acid. Beta-lactam antibiotics caused rapid loss of viability and lysis in cultures of chi1776 or in chi2452 grown at 32 degrees C. In contrast, the same antibiotics caused only a reversible inhibition of growth in mutants C-80 and C-254 or in cultures of chi2452 grown at 42 degrees C. Beta-lactam antibiotics that show high affinity for penicillin-binding proteins 2 or 3 (mecillinam and cephalexin, respectively) induced similar morphological effects (ovoid cell formation and filament formation) in both parent and mutant strains. In contrast, beta-lactam antibiotics which have a high affinity for penicillin-binding protein 1 (e.g., cephaloridine or cefoxitin), which cause rapid lysis in the parental strains, caused cell elongation in the tolerant bacteria. In contrast to the parental cells, autolytic cell wall degradation was not triggered by beta-lactam treatment of chi2452 cells grown at 42 degrees C or in mutants C-80 and C-254. The total autolytic activity of mutants C-80 and C-254 was less than 30% that of the parent strain. However, virtually identical autolytic activities were found in cells of chi2452 grown either at 42 or 32 degrees C. Possible mechanisms for the penicillin tolerance of E. coli are considered on the basis of these findings.  相似文献   

3.
Synchronous cells of the thermosensitive division-defective Escherichia coli strain MACI (divA) divided at the restrictive temperature (42 degrees C) if they were allowed to grow at 42 degrees C for a certain period before protein synthesis was inhibited by adding chloramphenicol (CAP) or rifampicin. The completion of chromosome replication was not required for such divA-independent division. Synchronous cells of strain MACI divided in the presence of an inhibitor of DNA synthesis, nalidixic acid, if they were shifted to 42 degrees C and CAP or rifampicin was added after some time; cells of the parent strain MC6 (div A+) treated in the same way did not divide. These data suggest that coupling of cell division to DNA synthesis depends on the divA function. The ability to divide at 42 degrees C, whether or not chromosome termination was allowed, was directly proportional to the mean cell volume of cultures at the time of CAP addition, suggesting that cells have to be a certain size to divide under these conditions. The period of growth required for CAP-induced division had to be at the restrictive temperature; when cells were grown at 30 degrees C, in the presence of nalidixic acid to prevent normal division, they did not divide on subsequent transfer to 42 degrees C followed, after a period, by protein synthesis inhibition. A model is proposed in which the role of divA as a septation initiator gene is to differentiate surface growth sites by converting a primary unregulated structure, with the capacity to make both peripheral wall and septum, to a secondary structure committed to septum formation.  相似文献   

4.
The restricted access of lysozyme to the murein layer of exponential phase Escherichia coli is enhanced considerably by osmotic shock. When cells suspended in Tris/EDTA/sucrose are diluted 11-fold in water or 10 mM EDTA in the presence of lysozyme, their susceptibility to lysozyme increases by a factor of 50--100, for both Escherichia coli JC411 and W3110, grown to the early exponential phase in unsuppleneted or supplemented minimal media, and in Brain Heart Infusion. Since an 11-fold dilution causes lysis of lysozyme spheroplasts, the effects of a 2-fold dilution have also been investigated. A 2-fold dilution of cell suspended in TrisEDTA/sucrose still increases their susceptibility to lysozyme by a factor of 10--50, but the resulting spheroplasts remain intact. EDTA is necessary to permit lysozyme access to the murein layer during the dilution, which is ineffective in the presence of 5 mM MgCl2. These results are discussed in terms of the formation of lysozyme spheroplasts from young Escherichia coli.  相似文献   

5.
Changes in the protoplast membrane of the KM strain of Bacillus megaterium were assessed after growth at 20, 30, or 37 degrees, C. Although the overall membrane concentrations of lipids and proteins were virtually unchanged, increased culture temperature resulted in cells with membranes that contained relatively more unbranched and long-chain fatty acids and more acidic phospholipids, as well as different proportions and numbers of individual proteins. Electrophoretic analysis revealed 23, 31, or 29 protein bands, respectively, in membranes from cells grown at the three temperatures. Protoplasts from cells grown at higher temperatures were considerably less susceptible to lysis by shearing forces. As judged by passive leakage at 30 degrees C, intact cells from cultures grown at 37 degrees C were the least permeable to erythritol. Relatively low ambient concentrations of Ca2+ or Mg2+ protected protoplasts from osmotic lysis but even much higher concentrations left erythritol leakage virtually unaffected. Thus, growth temperature affected not only membrane lipis but also membrane proteins and these changes resulted in membranes with altered mechanical properties and permeabilities.  相似文献   

6.
Two mutants of Streptococcus pneumoniae deficient in autolysin activity produced a protein that showed immunological identity with the N-acetyl-muramyl-L-alanyl-amidase present in the wild-type strain, when tested with antiserum obtained against this enzyme. The protein was produced by the mutant cultures grown either at 37 degrees C or at 30 degrees C, although only the cell extracts obtained at 30 degrees C showed significant cell wall hydrolysing activity. In contrast to the lysis resistance of these bacteria grown at 37 degrees C, mutant cultures grown at 30 degrees C exhibited significant degrees of autolysis when treated with detergent or cell wall inhibitors. Extracts of the mutant cultures contained a cell wall hydrolysing activity that was rapidly inactivated during incubation at 37 degrees C.  相似文献   

7.
Cultures were batch grown in simple salts media in which growth was limited either by depletion of glucose and magnesium (C/Mg-dep) or by glucose alone (C-dep). Cultures were also grown in these media supplemented by calcium and/or manganese.
All cultures grown in the C-dep media were sensitive to ethylenediaminetetraacetic acid (EDTA), polymyxin and also to cold shock but were relatively resistant to ethyleneglycol-bis(2-aminoethyl ether)-N, N-tetraacetic acid (EGTA). Inclusion of calcium or manganese in the growth medium enhanced lysis by EDTA. Cultures grown in the basic C/Mg-dep media were resistant to EDTA, EGTA, polymyxin and to cold shock. Sensitivity to these agents was retained by cultures grown in C/Mg-dep media supplemented with Ca2+ and/or Mn2+. Cells grown in C/Mg-dep media with added Mn2+ were more sensitive to EDTA and polymyxin than those from the unsupplemented C/Mg-dep media but still resistant compared with C-dep cultures. All cultures from supplemented C/Mg-dep media were more sensitive to EGTA than those from any of the C-dep media.
Whole cells and cell walls from these various media had differing amounts of cell wall, phosphorus, amino sugar, carbohydrates, readily extractable lipid (REL), total phospholipid (PL), and especially differences in cell wall divalent metal cation content.
The differences in PL, REL and amino sugars and carbohydrate did not correlate with the response of C-dep and C/Mg-dep bacteria to EDTA, EGTA or polymyxin. The results are discussed in relation to the hypothesis that the sensitivity of Pseudomonas aeruginosa to polymyxin and EDTA is more dependent on outer membrane cation content rather than on other components, e.g. PL and lipopolysaccharide.  相似文献   

8.
In vivo studies on the attachment of lipoprotein to the murein (peptidoglycan) of Escherichia coli showed that it takes several generations of growth until the amount of lipoprotein on newly made murein is equilibrated. The technique used involves degradation of the sodium dodecyl sulfate-insoluble murein-lipoprotein complex (sacculus, rigid layer) with lysozyme and separation of the labeled products on paper. No lipoprotein was found on murein subunits incorporated during a pulse of [3H]diaminopimelate for 1 min in logarithmically growing cells at 37 C. Even after one doubling of the cell mass, only 4 to 8% of the labeled murein was isolated as bound to lipoprotein. With uniformly labeled murein, 30% remains bound to lipoprotein after lysozyme treatment, corresponding to three murein subunits. Therefore it can be concluded that during pulse labeling either no lipoprotein is incorporated into the newly synthesized murein or no murein subunits are inserted into existing murein around lipoprotein attachment sites. Longer pulse and pulse-chase experiments argue for the latter interpretation. It is therefore concluded that incorporation of murein subunits into the growing murein polymer is not at all a random process. Instead, quite large areas of murein, on which lipoprotein is situated, seem to be preserved. Under the influence of penicillin FL 1060 murein synthesis is 50% inhibited. The rate of lipoprotein attachment is less affected so that increasing amounts of lipoprotein become attached during spheroplast formation. By the time the stationary growth phase has been reached, the lipoprotein content of the murein has doubled. Diaminopimelate auxotrophic mutants require, in the presence of penicillin FL 1060, more diaminopimelate for full growth than in the absence of penicillin FL 1060. This finding and the fact that murein synthesis is always inhibited by 50% over a wide range of penicillin concentration (1 to 1,000 mug/ml) point to the inhibition of an enzymatic step of murein synthesis which can be partially bypassed by a second enzyme, less efficient but resistant to penicillin FL 1060.  相似文献   

9.
Several known outer membrane permeabilizers increased susceptibility of a highly resistant pathogenic strainPseudomonas aeruginosa to different antibiotics and plant extracts. Of all the chemicals tested, EDTA, sodium citrate and sodium hexametaphosphate (HMP) were found to be potent permeabilizers as shown by enhanced lysis of the bacteria in the presence of lysozyme. In the presence of EDTA and sodium citrate susceptibility of the strain to gentamicin and rifampicin increased markedly. The strain was resistant to vancomycin but became susceptible when grown in the presence of increasing amounts of EDTA and sodium citrate. Similar results were obtained for erythromycin when treated with sodium citrate. EDTA was found to be most potent permeabilizer in enhancing the activity of the plant extracts. Though HMP was an effective permeabilizer it had a weak or no effect on the activity of the antibiotics and plant extracts.  相似文献   

10.
Three mutants of Escherichia coli K-12 which form filaments during 42 C incubation have been characterized. The mutant strains AX621, AX629, and AX655 continued to grow and to synthesize deoxyribonucleic acid at 42 C for 150 to 180 min, after which time growth ceased. When cultures of the mutants were transferred from 42 to 28 C, septation of the filaments began after a 25- to 30-min period and continued at a greater than normal rate until no filaments remained. Addition of chloramphenicol at the time of transfer from 42 to 28 C prevented cell division in strain AX655 and caused lysis of strains AX621 and AX629. The temperature sensitivity mutation in each strain mapped near leu. For strain AX621, the mutation was specifically located between leu and nadC by P1 transduction. Properties of these strains are compared with those of other cell division mutants.  相似文献   

11.
Escherichia coli strain CR341T28 will not grow at temperatures above 34 degrees C in liquid medium, and the adenylate kinase of this strain is heat sensitive. When a culture was shifted from a permissive (30 degrees C) to a nonpermissive (36 degrees C) temperature, the adenylate energy charge fell from 0.9 to 0.2, with a concurrent decrease in the number of viable cells and in the specific activity of adenylate kinase. When cultures of the temperature-sensitive strain were grown at temperatures above 30 degrees C, the adenylate energy charge, the specific activity of adenylate kinase, and the growth rate were lower than the corresponding parameters for the parental strain. By isotopic labeling of the adenine nucleotides in vivo, it was determined that increasing growth temperatures between 30 and 34 degrees C for the heat-sensitive strain resulted in a decrease in the adenosine triphosphate-to-adenosine monophosphate and adenosine triphosphate-to-adenosine diphosphate ratios. Between 26 and 30 degrees C the adenosine triphosphate-to-adenosine diphosphate ratio was essentially normal in the temperature-sensitive strain, but the adenosine triphosphate-to-adenosine diphosphate ratio was decreased. The adenylate ratios in the parental strain did not change between 30 and 34 degrees C. The adenylate kinase mass action ratio for each strain was essentially constant under all growth conditions. When assayed at 30 degrees C, the affinities of the enzyme from the mutant strain were somewhat lower than those of the parent adenylate kinase. The mutant enzyme also did not exhibit the substrate inhibition that was observed at high adenosine monophosphate concentrations with the parental enzyme. An increase in the assay temperature from 30 degrees to 40 degrees C had little or no effect on the Km values determined for the parental adenylate kinase, but caused the Km values determined for the mutant adenylate kinase to increase by a factor of two or more.  相似文献   

12.
Egg white lysozyme killed or prevented growth of Listeria monocytogenes Scott A in several foods. Lysozyme was more active in vegetables than in animal-derived foods that we tested. For maximum activity in certain foods, EDTA was required in addition to lysozyme. Lysozyme with EDTA effectively killed inoculated populations of 10(4) L. monocytogenes per g in fresh corn, fresh green beans, shredded cabbage, shredded lettuce, and carrots during storage at 5 degrees C. Control incubations without lysozyme supported growth of L. monocytogenes to 10(6) to 10(7)/g. Lysozyme had less activity in animal-derived foods, including fresh pork sausage (bratwurst) and Camembert cheese. In bratwurst, lysozyme with EDTA prevented L. monocytogenes from growing for 2 to 3 weeks but did not kill significant numbers of cells and did not prevent eventual growth. The control sausages not containing lysozyme supported rapid and heavy growth, which indicated that lysozyme was bacteriostatic for 2 to 3 weeks in fresh pork sausage. We also prepared Camembert cheese containing 10(4) L. monocytogenes cells per g and investigated the changes during ripening in cheeses supplemented with lysozyme and EDTA. Cheeses with lysozyme by itself or together with EDTA reduced the L. monocytogenes population by approximately 10-fold over the first 3 to 4 weeks of ripening. In the same period, the control cheese wheels without added lysozyme with and without chelator slowly started to grown and eventually reached 10(6) to 10(7) CFU/g after 55 days of ripening.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Previous experiments with Escherichia coli strain 2S142 have shown that the synthesis of stable RNA is preferentially blocked at the restrictive temperature. In this paper, we have examined the capacity of this mutant strain to synthesize RNA in vitro. Growth of the strain for as short a period as 10 min at 42 degrees C resulted in a 40 to 60% loss of RNA synthetic capacity and a fourfold decrease in percent rRNA synthesized in toluenized cell preparations. The time course for the loss and recovery of this RNA synthetic capacity correlated very well with the changes in RNA synthesis observed in vivo. We found no difference in temperature sensitivity of the purified RNA polymerase from the mutant and the parental strains. Moreover, there was no detectable alteration in the amount of enzyme, specific activity of the enzyme, or electrophoretic mobility of the subunits when the mutant strain was grown at 42 degrees C. The capacity for rRNA synthesis was also measured with the Zubay in vitro system (Reiness et al., Proc. Natl. Acad. Sci. 72:2881-2885, 1975). Supernatant fractions (S-30) prepared from cells grown at 30 degrees C were capable of up to 31.2% rRNA synthesis, using phi 80d3 DNA as template. S-30 fractions from cells grown at 42 degrees C synthesized 8.6% rRNA. The bottom one-third of the S-100 fraction and the ribosomal salt wash from 30 degrees C cells contained one or more factors which partially restored preferential rRNA synthesis in S-30 fractions from cells grown at 42 degrees C. Preliminary evidence suggests that the factor(s) is protein in nature.  相似文献   

14.
Egg white lysozyme killed or prevented growth of Listeria monocytogenes Scott A in several foods. Lysozyme was more active in vegetables than in animal-derived foods that we tested. For maximum activity in certain foods, EDTA was required in addition to lysozyme. Lysozyme with EDTA effectively killed inoculated populations of 10(4) L. monocytogenes per g in fresh corn, fresh green beans, shredded cabbage, shredded lettuce, and carrots during storage at 5 degrees C. Control incubations without lysozyme supported growth of L. monocytogenes to 10(6) to 10(7)/g. Lysozyme had less activity in animal-derived foods, including fresh pork sausage (bratwurst) and Camembert cheese. In bratwurst, lysozyme with EDTA prevented L. monocytogenes from growing for 2 to 3 weeks but did not kill significant numbers of cells and did not prevent eventual growth. The control sausages not containing lysozyme supported rapid and heavy growth, which indicated that lysozyme was bacteriostatic for 2 to 3 weeks in fresh pork sausage. We also prepared Camembert cheese containing 10(4) L. monocytogenes cells per g and investigated the changes during ripening in cheeses supplemented with lysozyme and EDTA. Cheeses with lysozyme by itself or together with EDTA reduced the L. monocytogenes population by approximately 10-fold over the first 3 to 4 weeks of ripening. In the same period, the control cheese wheels without added lysozyme with and without chelator slowly started to grown and eventually reached 10(6) to 10(7) CFU/g after 55 days of ripening.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pseudomonas aeruginosa, which was resistant to a wide variety of antibiotics, became sensitive to several of these antibiotics when grown and tested at 46 degrees C. Cell wall antibiotics such as penicillin G and ampicillin were only effective when added to cells growing at 46 degrees C prior to a temperature shift to 37 degrees C. Antibiotics which penetrate the cytoplasmic membrane to express their inhibiting action present a pattern different from those which are active against the outer cell wall. In order that these compounds be effective, the permeability of the cytoplasmic membrane must be further altered with agents such as EDTA which allow the penetration of actinomycin D. Inhibitors of protein synthesis, such as streptomycin and chloramphenicol, have increased access to their sites of action in cells grown at 46 degrees C. Cells grown at 46 degrees C have 40% less lipopolysaccharide (LPS) than cells grown at 37 degrees C and the LPS aggregates were of large molecular size in cells grown at 46 degrees C. Growth at 46 degrees C affects the permeability properties of the outer cell wall more than the permeability properties of the cytoplasmic membrane and this was due, in part, to the selective release of LPS of LPS-protein complexes at elevated growth temperatures.  相似文献   

16.
Bacterial lysis induced by the expression of the cloned lysis gene of the RNA bacteriophage MS2 in Escherichia coli was shown to be under the same regulatory control mechanisms as penicillin-induced lysis. It was controlled by the stringent response and showed the phenomenon of tolerance when E. coli was grown at pH 5. Changes in the fine structure of the murein were found to be the earliest physiological changes in the cell, taking place 10 min before the onset of cellular lysis and inhibition of murein synthesis. Both the average length of the glycan strands and, with a time lag, the degree of cross-linkage were altered, indicating that a lytic transglycosylase and a DD-endopeptidase had been triggered. After extensive separation of the membranes by isopycnic sucrose gradient centrifugation, the lysis protein was present predominantly in the cytoplasmic membrane and in a fraction of intermediate density and, to a lesser degree, in the outer membrane, irrespective of the conditions of growth. However, only under lysis-permissive conditions could a 17% increase in the number of adhesion sites between the inner and outer membranes be observed. Thus, a casual relationship between lysis and the formation of lysis protein-induced adhesion sites seems to exist.  相似文献   

17.
Addition of high molecular weight dextran to culture medium prevents the initiation of T lymphocyte-mediated killing by holding the cytolytic T lymphocytes (CTL) and target cells in suspension and preventing intercellular contact. Suspension in 10% dextran was used to interrupt the ongoing formation of adhesions between CTL and target cells already in contact in a centrifuged pellet. The results demonstrate that 1) firm adhesions form between CTL and target cells within 1 min at 37 degrees C; 2) once formed, these adhesions are stable at low temperature and are resistant to mechanical shearing forces; 3) these adhesions can be disrupted by EDTA; 4) immediately after the adhesions form, separation of the CTL from the target cells prevents lysis of the latter; 5) after incubation of targets adhering to CTL for an additional 6 min at 37 degrees C, removal of the CTL no longer prevents target cell lysis. Thus, target cells become "programmed" for subsequent lysis within a few minutes after contact with CTL, after which lysis occurs during the next several hours without further participation of the effector cell. At 15 degrees C, adhesions form 1/17 as fast as at 37 degrees C. Programming of target cells for lysis occurs 1/76 as fast at 15 degrees C as at 37 degrees C. Thus, the programming for lysis step is about 4-fold more temperature dependent than the adhesion step. In addition to being detected by subsequent target cell lysis in 10% dextran, the adhering cell clusters can be counted with low power microscopy. This permitted verification that EDTA separates the clusters after programming for lysis is complete. Moreover, the great majority of the clusters seen at 37 degrees C are antigen-specific. Knowledge of the cluster size distribution and the subsequent level of lysis permits the deduction that not less than 6% of the sensitized peritoneal cell populations used were CTL.  相似文献   

18.
A thermosensitive sporulation mutant (t(s)-4) of Bacillus subtilis was isolated, and its morphological, physiological, and enzymatic properties were investigated. This mutant is able to grow equally well at 30 and 42 C, but is unable to sporulate at the higher temperature. Electron microscope studies have shown that the t(s)-4 mutant is blocked at stage zero of spore development. This was further confirmed by its inability to produce antibiotic when grown at the restrictive temperature and by the relatively low ribonucleic acid (RNA) and protein turnover during the stationary growth phase, characteristic for stage zero asporogenic mutants. At the permissive temperature, however, antibiotic production and RNA and protein turnover took place at the rate normally found in sporogenic strains of B. subtilis. The above properties were not altered in the parent strain when grown at either 30 or 42 C. By shifting cultures of the t(s)-4 mutant from 30 to 42 C and from 42 to 30 C at different stages of growth, we have been further able to show that the event affected at the high temperature takes place at a very early stage of spore development. As a consequence of this early block in the sporulation process, the t(s)-4 mutant grown at 42 C became defective in the late spore-specific enzymes involved in the biosynthesis of dipicolinic acid. This study suggests that the sporulation process is mediated by a regulatory protein which is altered in the thermosensitive mutant when grown at the restrictive temperature. As a result of this alteration, a pleiotropic phenotype is produced which has lost the ability to catalyze the late biochemical reactions required for spore formation.  相似文献   

19.
J Miki  M Maeda    M Futai 《Journal of bacteriology》1988,170(1):179-183
A mutant of Escherichia coli showing temperature-sensitive growth on succinate was isolated, and its mutation in the initiation codon (ATG to ATA) of the uncG gene (coding for the gamma subunit of H+-ATPase F0F1) was identified. This strain could grow on succinate as the sole carbon source at 25 and 30 degrees C, but not at 37 or 42 degrees C. When this strain was grown at 25 degrees C on succinate or glycerol, its membranes had about 15% of the ATPase activity of wild-type membranes, whereas when it was grown at 42 degrees C, its membranes had about 2% of the wild-type ATPase activity. Membranes of the mutant grown at 25 or 42 degrees C could bind F1 functionally, resulting in about 40% of the specific activity of wild-type membranes. The gamma subunit was identified in an EDTA extract of membranes of the mutant grown at 25 degrees C, but was barely detectable in the same amount of extract from the mutant grown at 42 degrees C. These results indicate that initiation of protein synthesis from the AUA codon is temperature sensitive and that the gamma subunit is essential for assembly of F1 in vivo as shown by in vitro reconstitution experiments (S. D. Dunn and M. Futai, J. Biol. Chem. 255:113-118, 1980).  相似文献   

20.
Aminoacyl-tRNA synthetase mutants of Escherichia coli are resistant to amdinocillin (mecillinam), a beta-lactam antibiotic which specifically binds penicillin-binding protein 2 (PBP2) and prevents cell wall elongation with concomitant cell death. The leuS(Ts) strain, in which leucyl-tRNA synthetase is temperature sensitive, was resistant to amdinocillin at 37 degrees C because of an increased guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool resulting from partial induction of the stringent response, but it was sensitive to amdinocillin at 25 degrees C. We constructed a leuS(Ts) delta (rodA-pbpA)::Kmr strain, in which the PBP2 structural gene is deleted. This strain grew as spherical cells at 37 degrees C but was not viable at 25 degrees C. After a shift from 37 to 25 degrees C, the ppGpp pool decreased and cell division was inhibited; the cells slowly carried out a single division, increased considerably in volume, and gradually lost viability. The cell division inhibition was reversible when the ppGpp pool increased at high temperature, but reversion required de novo protein synthesis, possibly of septation proteins. The multicopy plasmid pZAQ, overproducing the septation proteins FtsZ, FtsA, and FtsQ, conferred amdinocillin resistance on a wild-type strain and suppressed the cell division inhibition in the leuS(Ts) delta (rodA-pbpA)::Kmr strain at 25 degrees C. The plasmid pAQ, in which the ftsZ gene is inactivated, did not confer amdinocillin resistance. These results lead us to hypothesize that the nucleotide ppGpp activates ftsZ expression and thus couples cell division to protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号