首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non‐native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine‐scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA‐COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders (Gammarus tigrinus, Pontogammarus maeoticus, and Obesogammarus crassus) and strictly restricted to their native regions (Gammarus locusta, Gammarus salinus, Gammarus zaddachi, and Gammarus oceanicus). Despite that genetic diversity did not differ between invasive and non‐invasive species, we observed that populations of non‐invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non‐native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage divergence holds an important role in the distribution of neutral genetic diversity.  相似文献   

2.
Introduction events can lead to admixture between genetically differentiated populations and bottlenecks in population size. These processes can alter the adaptive potential of invasive species by shaping genetic variation, but more importantly, they can also directly affect mean population fitness either increasing it or decreasing it. Which outcome is observed depends on the structure of the genetic load of the species. The ladybird Harmonia axyridis is a good example of invasive species where introduced populations have gone through admixture and bottleneck events. We used laboratory experiments to manipulate the relatedness among H. axyridis parental individuals to assess the possibility for heterosis or outbreeding depression in F1 generation offspring for two traits related to fitness (lifetime performance and generation time). We found that inter‐populations crosses had no major impact on the lifetime performance of the offspring produced by individuals from either native or invasive populations. Significant outbreeding depression was observed only for crosses between native populations for generation time. The absence of observed heterosis is indicative of a low occurrence of fixed deleterious mutations within both the native and invasive populations of H. axyridis. The observed deterioration of fitness in native inter‐population crosses most likely results from genetic incompatibilities between native genomic backgrounds. We discuss the implications of these results for the structure of genetic load in H. axyridis in the light of the available information regarding the introduction history of this species.  相似文献   

3.
Genetic variation in many invasive species shows little or no signs of a founder event, suggesting that high genetic diversity may facilitate establishment success. The rocky‐shore, plankton‐feeding cichlid fish Cynotilapia afra is endemic to Lake Malawi, but naturally absent from many suitable sites. In the 1960s, this species was introduced to the southern areas of the lake, presumably as a result of the aquarium fish trade. It has now become established on a number of rocky areas within the Lake Malawi National Park. Here, we analysed DNA sequence variation in the mitochondrial control region of six native and four introduced populations of C. afra, and three populations of the closely‐related and hybridizing Pseudotropheus zebra. In contrast to previous studies of Lake Malawi rock dwelling cichlids, network analyses suggested that native populations of C. afra showed high levels of lineage sorting in mtDNA. Introduced populations showed higher sequence and haplotype diversity than their native counterparts. Our analyses suggested that the elevated gene diversity was largely attributed to the fact that the introduced C. afra populations were derived from several genetically distinct and geographically separate populations, and to a lesser extent because of introgressive hybridization with native P. zebra. The establishment and spread of C. afra may be partly because of its ability to occupy a vacant ecological niche, but it may also have been facilitated by its enhanced genetic diversity.  相似文献   

4.
Social insects rank among the most invasive of terrestrial species. The success of invasive social insects stems, in part, from the flexibility derived from their social behaviors. We used genetic markers to investigate if the social system of the invasive wasp, Vespula pensylvanica, differed in its introduced and native habitats in order to better understand variation in social phenotype in invasive social species. We found that (1) nestmate workers showed lower levels of relatedness in introduced populations than native populations, (2) introduced colonies contained workers produced by multiple queens whereas native colonies contained workers produced by only a single queen, (3) queen mate number did not differ significantly between introduced and native colonies, and (4) workers from introduced colonies were frequently produced by queens that originated from foreign nests. Thus, overall, native and introduced colonies differed substantially in social phenotype because introduced colonies more frequently contained workers produced by multiple, foreign queens. In addition, the similarity in levels of genetic variation in introduced and native habitats, as well as observed variation in colony social phenotype in native populations, suggest that colony structure in invasive populations may be partially associated with social plasticity. Overall, the differences in social structure observed in invasive V. pensylvanica parallel those in other, distantly related invasive social insects, suggesting that insect societies often develop similar social phenotypes upon introduction into new habitats.  相似文献   

5.
Several eusocial wasps are prominent invaders to remote islands. The paper wasp Polistes chinensis antennalis is native to East Asia, was introduced to New Zealand in 1979 and has expanded its distribution there. This provides an excellent opportunity to examine the impacts of an initial bottleneck and subsequent expansion on genetic structure. We analysed and compared the genetic population structures of the native (Japan and South Korea) and invasive New Zealand populations. Although 94% of individuals had shared haplotypes detected across both populations, the remaining 6% had private haplotypes identified in only one of the three countries. The genetic variation at microsatellite loci was lower in New Zealand than in native countries, and the genetic structure in New Zealand was clearly distinct from that in its native range. Higher frequencies of diploid‐male‐ and triploid‐female‐producing colonies were detected in New Zealand than in the native countries, showing the reduction in genetic variation via a genetic bottleneck. At least two independent introductions were suggested, and the putative source regions for New Zealand were assigned as Kanto (central island) and Kyushu (south island) in Japan. Serial founder events following the initial introduction were also indicated. The estimated dispersal distance between mother and daughter in New Zealand was twice that in Japan. Thus, the introduction history of P. chinensis antennalis in New Zealand is probably the result of at least two independent introductions, passing through a bottleneck during introduction, followed by population expansion from the point of introduction.  相似文献   

6.
The Bonin Islands are endowed with endemic species. However, these species are at risk of extinction because of the exuberance of invasive alien plants. Therefore, native plant species should be revegetated after eradicating alien plants. We investigated the genetic variation of Terminalia catappa populations in the Bonin Islands by using nuclear (n) microsatellites (simple sequence repeats [SSRs]) and chloroplast (cp) DNA. No significant differences were observed in the genetic diversity of nSSRs among 22 populations. However, recent bottlenecks were detected in three populations on the Chichijima Island group. nSSR variation and cpDNA haplotypes suggested the presence of two genetically distinct groups in the Mukojima and Chichijima Island groups and the Hahajima Island group. A similar genetic structure was observed in plants and animals in the Bonin Islands. Populations on the three islands, which were separated from other islands in each island group when the water depth was 50‐m lower than the present level, were dominated by unique nSSRs clusters, suggesting that historical changes in island connections during the Pleistocene era affected genetic substructuring. These results suggested that different factors contributed to the genetic structure of T. catappa on different geographic scales. At the whole‐island level, the genetic structure was determined by long‐distance seed dispersal by ocean currents. At the island‐group level, the genetic structure was determined by historical changes in island connections caused by changes in the sea level due to glacial–interglacial transition. These findings would help in establishing transplantation zone borders for revegetating T. catappa on the Bonin Islands.  相似文献   

7.
Multiple introductions can play a prominent role in explaining the success of biological invasions. One often cited mechanism is that multiple introductions of invasive species prevent genetic bottlenecks by parallel introductions of several distinct genotypes that, in turn, provide heritable variation necessary for local adaptation. Here, we show that the invasion of Aegilops triuncialis into California, USA, involved multiple introductions that may have facilitated invasion into serpentine habitats. Using microsatellite markers, we compared the polymorphism and genetic structure of populations of Ae. triuncialis invading serpentine soils in California to that of accessions from its native range. In a glasshouse study, we also compared phenotypic variation in phenological and fitness traits between invasive and native populations grown on loam soil and under serpentine edaphic conditions. Molecular analysis of invasive populations revealed that Californian populations cluster into three independent introductions (i.e. invasive lineages). Our glasshouse common garden experiment found that all Californian populations exhibited higher fitness under serpentine conditions. However, the three invasive lineages appear to represent independent pathways of adaptation to serpentine soil. Our results suggest that the rapid invasion of serpentine habitats in California may have been facilitated by the existence of colonizing Eurasian genotypes pre‐adapted to serpentine soils.  相似文献   

8.
Ascidians are sessile marine chordate invertebrates found along seashores worldwide and are typically regarded as invasive organisms. Knowledge concerning their global genetic structure and subsequent invasive potential is limited. Here, we identified three ascidians—Ciona robusta, Ciona savignyi, and Styela clava from the northeast region of China using morphological characteristics and mitochondrial cytochrome c oxidase subunit I (cox1) as genetic marker. We additionally used phylogenetics to aid in the identification of these three species. The results of a population genetic analysis showed that among the three species, the level of haplotype diversity was particularly high within C. savignyi, and nucleotide diversity varied moderately. We divided the three species separately into native and invasive populations using 170 cox1 sequences from global resources to explore population genetic structure and invasive potential. Although in the network analysis Ciona spp. formed haplogroups of native and invasive populations, some haplotypes were still shared. We found that the haplotypes did not cluster within the network of S. clava. Our AMOVA results also showed that Ciona spp. had a weak genetic structure, and less genetic differentiation was present in S. clava. These data suggest that there are extensive incursions of these three ascidians into different geographical regions. Global comparisons of ascidian populations will help in the understanding of their population genetic structure and invasive potential, hence providing important insights regarding conservation as well as management.  相似文献   

9.
Aim To explore the potential of genetic processes and mating systems to influence successful plant invasions, we compared genetic diversity of the highly invasive tropical treelet, Miconia calvescens, in nine invasive populations and three native range populations. Specifically, we tested how genetic diversity is partitioned in native and invaded regions, which have different invasion histories (multiple vs. single introductions). Lastly, we infer how levels of inbreeding in different regions impact invasion success. Location Invaded ranges in the Pacific (Hawaii, Tahiti, New Caledonia) and Australia and native range in Costa Rica. Methods Genetic diversity was inferred by analysing variation at nine microsatellite loci in 273 individuals from 13 populations of M. calvescens. Genetic structure was assessed using amova , isolation by distance (IBD) within regions, a Bayesian clustering approach, and principal coordinates analysis. Results Microsatellite analysis revealed that invaded regions exhibit low levels of allelic richness and genetic diversity with few private alleles. To the contrary, in the native range, we observed high levels of allelic richness, high heterozygosity and 78% of all private alleles. Surprisingly, despite evident genetic bottlenecks in all invasive regions, similarly high levels of inbreeding were detected in both invasive and native ranges (FIS: 0.345 and 0.399, respectively). Bayesian clustering analysis showed a lack of geographical structure in the Pacific and evidence of differing invasion histories between the Pacific and Australia. While Pacific populations are derived from a single introduction to the region, multiple introductions have taken place in Australia from different source regions. Main conclusions Multiple introductions have not resulted in increased genetic diversity for M. calvescens invasions. Moreover, similar inbreeding levels between native and invaded ranges suggests that there is no correlation between levels of inbreeding and levels of standing genetic diversity for M. calvescens. Overall, our results show that neither inbreeding nor low genetic diversity is an impediment to invasion success.  相似文献   

10.
Eastern mosquitofish (Gambusia holbrooki) were introduced into Australia in 1925 and released to control mosquitoes. Gambusia holbrooki rapidly became invasive in recipient environments and now threaten native fauna. In this study, we used five polymorphic microsatellite loci and sequence from two mitochondrial genes, cytochrome b and cytochrome oxidase I, to evaluate genetic variation, colonisation and movement patterns of introduced G. holbrooki in the greater Melbourne area, and to assist in identifying the feasibility of local eradication. Microsatellite variation was consistently low within populations and there was evidence of bottleneck events for several populations. Populations displayed significant structuring associated with river basins rather than geographic distance, suggesting that habitat connectivity is important for dispersal. However, a few populations within river basins were more closely related to populations in other river basins than within their own basin, most likely reflecting a role of human-assisted dispersal in population establishment. Mitochondrial sequencing revealed only a single haplotype and suggested all populations were founded by individuals from a common source. These genetic data help delineate boundaries for local management strategies.  相似文献   

11.
We studied the invasive warty cabbage Bunias orientalis (Brassicaceae) in three geographically distinct areas. Using inter-simple sequence repeat fingerprinting, we analyzed warty cabbages, including non-native populations, from the eastern Baltic and western Siberian regions and native populations from southwestern Russia. The eastern Baltic region and western Siberia represent the two opposite directions of B. orientalis spread in climatically different zones. The genetic structures of the native and non-native B. orientalis populations were assessed through analysis of molecular variance (AMOVA) and the Bayesian clustering method and by determining the main measures of genetic diversity. AMOVA revealed considerable population differentiation in both the native and invasive ranges. Our results did not indicate a decrease in genetic diversity in the non-native populations of B. orientalis. Similar measures of genetic diversity and genetic structure were determined in the invasive populations in two geographically and ecologically distinct, non-native regions located in Europe and Asia. In both of these regions, higher genetic diversity was detected in the non-native populations than in the native region populations, which may be due to multiple introductions. However, Bayesian clustering analysis revealed slightly different sources of invasive populations in the two non-native regions. Genetic diversity patterns revealed the lack of isolation by distance between populations and confirmed the influence of anthropogenic factors on the spread of B. orientalis. The significance of native populations as germplasm resources for breeding is discussed.  相似文献   

12.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   

13.
Genetic variation is increasingly recognized as an important factor influencing the establishment and spread of introduced species, and depends on both the introduction history and partitioning of genetic variation within and among potential source populations. We examine patterns of genetic variation in native and introduced populations of variable leaf watermilfoil, Myriophyllum heterophyllum, using chloroplast (trnL-F) and ribosomal (ITS) DNA sequences, as well as amplified fragment length polymorphisms (AFLPs). We identify a strong phylogeographic break distinguishing populations located on the Atlantic Coastal Plain (ACP) versus other (“Continental”) portions of the native range. Within these distinct biogeographic regions, we also find genetic variation to be strongly partitioned among populations as analysis of molecular variance (AMOVA) partitioned 91 and 75% of cpDNA and ITS diversity among populations, respectively. We demonstrate that the introduced ranges of variable leaf watermilfoil (northeastern and western US) result from multiple independent introductions from a variety of source populations, including lineages from both the ACP and Continental portions of the native range. In addition, we used our molecular markers to demonstrate that variable leaf watermilfoil is genetically distinct from three closely-related species that it is morphologically similar to. In particular, we demonstrate that M. heterophyllum is clearly distinct from a morphologically similar native species in the western US, M. hippuroides—whose distinctiveness from M. heterophyllum has been questioned—and therefore confirm the introduction of M. heterophyllum in the western US. Furthermore, we provide the first evidence for hybridization between these two species. Finally, our molecular markers identify previously unrecognized genetic variation in these four species, and therefore demonstrate the need for further taxonomic investigation.  相似文献   

14.
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis.  相似文献   

15.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

16.
Abstract: In the Netherlands indigenous Quercus robur L. populations are rare and have been maintained as patches in ancient woodland. For adequate conservation of these populations, information about genetic variation and population structure is necessary. In order to assess the genetic variation and structure of these populations, microsatellite polymorphisms were studied in two autochthonous populations. These two populations differed slightly for their gene diversity, which was as high as was observed for Q. robur populations in France and Germany. For reforestation purposes there is an interest in the genetic variation of a half‐sib family harvested from one tree. The gene diversity of the two studied half‐sib families ‐ obtained from a forest and an urban area ‐ was similar, but relatively low. This indicates that, for reforestation purposes, seeds should be harvested from many different trees in order to obtain a population with a genetic variation as high as was observed for an autochthonous population.  相似文献   

17.
Patterns of spatial genetic structure produced following the expansion of an invasive species into novel habitats reflect demographic processes that have shaped the genetic structure we see today. We examined 359 individuals from 23 populations over 370 km within the James River Basin of Virginia, USA as well as four populations outside of the basin. Population diversity levels and genetic structure was quantified using several analyses. Within the James River Basin there was evidence for three separate introductions and a zone of secondary contact between two distinct lineages suggesting a relatively recent expansion within the basin. Microstegium vimineum possesses a mixed-mating system advantageous to invasion and populations with low diversity were found suggesting a recent founder event and self-fertilization. However, surprisingly high levels of diversity were found in some populations suggesting that out-crossing does occur. Understanding how invasive species spread and the genetic consequences following expansion may provide insights into the cause of invasiveness and can ultimately lead to better management strategies for control and eradication.  相似文献   

18.
Introduced plant species that became successful invaders appear often more vigorous and taller than their conspecifics in the native range. Reasons postulated to explain this better performance in the introduced range include more favourable environmental conditions and release from natural enemies and pathogens. According to the Evolution of Increased Competitive Ability hypothesis (EICA hypothesis) there is a trade‐off between investment into defence against herbivores and pathogens, and investment into a stronger competitive ability. In this study, we conducted field surveys to investigate whether populations of the invasive perennial Solidago gigantea Ait (Asteraceae) differ with respect to growth and size in the native and introduced range, respectively. We assessed size and morphological variation of 46 populations in the native North American range and 45 populations in the introduced European range. Despite considerable variation between populations within continents, there were pronounced differences between continents. The average population size, density and total plant biomass were larger in European than in American populations. Climatic differences and latitude explained only a small proportion of the total variation between the two continents. The results show that introduced plants can be very distinct in their growth form and size from conspecifics in the native range. The apparently better performance of this invasive species in Europe may be the result of changed selection pressures, as implied by the EICA hypothesis.  相似文献   

19.
Biological invasions represent an important component of global change, with potentially huge detrimental effects on native biological biodiversity and ecosystems. Knowledge about invasion history provides information about the invasion process and the origin and genetic composition of invading populations. To clarify the source and invasive routes of a successful world-wide invader, the veined rapa whelk, Rapana venosa, genetic variability of samples from five representative native populations from coasts of Japan and China and 13 worldwide invasive populations was analyzed using 11 nuclear microsatellite loci. A dramatic decrease of genetic variation was detected in the invasive populations compared with the native populations. The results demonstrated that R. venosa was capable of establishing itself in many areas despite a dramatic genetic bottleneck, suggesting that a remarkable reduction of genetic diversity is not a limiting factor for short-term success of this invasive species. Considering the lack of mitochondrial variation previously observed in the invasive populations, the dramatic genetic bottleneck and the allele distribution detected using microsatellites suggested that the original introduced Black Sea population could have been founded by very few individuals, perhaps only a single female and a single male. The initial invasive Black Sea population was likely an accidental introduction from Japan, and then invaded the Adriatic Sea by range expansion, which served as a source for subsequent invasive populations in Europe and America by various transport vectors. In addition, microsatellite alleles in the invasive populations showed a tendency to mutate with the addition or deletion of a single repeat, which is consistent with the stepwise mutation model. Our findings provide a good example of how an aquatic invader with a drastic genetic bottleneck and very low genetic diversity rapidly expands its geographical range.  相似文献   

20.
Abstract

Fallopia (Polygonaceae) as a noxious weed contains 17 species in the world out of which three species occur in Iran with invasive distribution. F. convolvulus growing in wide range of soil types causes significant problems for native ecosystems of river banks. In this study, we have examined genetic variability in F. convolvulus for the first time in Iran. Ten Inter Simple Sequence Repeats (ISSR) markers were used to study the genetic variability on 11 populations of this species. Genetic diversity parameters, genetic distance and gene flow were determined. Genetic variation at inter- and intra-population level was evaluated by different methods. AMOVA and structure analyses revealed high genetic diversity within populations. Mantel test revealed a significant correlation between genetic and geographic distances. Between populations a limited gene flow was observed. It is concluded that local adaptation, low gene exchange and genetic drift can affect genetic diversity of F. convolvulus. Despite self-compatibility of this species, it is proposed that outcrossing may occur because of higher genetic variation among populations of this taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号