首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Using a human lymphoid cell line grown under continuous culture conditions, two distinct plateau states were induced, either by lack of sufficient medium-supplied nutrient, or by other unknown mechanisms dependent on cell density. Flow microfluorometric measurements show that growth arrest due to nutritional insufficiency results in an accumulation of cells with G1 DNA content. In contrast, growth arrest due to high cell density is not associated with an altered distribution of cells with respect to DNA content as the population progresses from exponential to plateau state growth. Cell size decreases with progression of the plateau state induced by either type of growth arrest. Cells in a plateau state induced by high cell density utilize glucose and incorporate exogenous amino acid into protein at approximately the same rate as exponential cells. Proliferating, high cell density, plateau state cells have cell cycle phase durations similar to exponential cells. The stable, plateau state cell density is maintained by cell loss. No stable, unbound growth inhibitory factor was found in the medium of density-inhibited plateau state cultures.  相似文献   

2.
本文用双参数FCM技术,对同一个细胞的DNA和RNA含量进行相关测量,比较了ACM B对小鼠L_(1210)白血病细胞周期和RNA含量的影响.结果发现在一次给药后8小时可导致早、中期S的积累,并抑制S期细胞的DNA合成;到24小时DNA合成恢复正常,并进入G_2期,但由于G_2期细胞进入M期受阻,造成G_2期细胞的积累,这时被阻断在G_2期的细胞RNA含量显著增加,形成正不平衡生长,而给药剂量较大的实验组(1/1.5LD_(50))S期细胞的RNA含量不随着DNA含量的增加而增加,形成负不平衡生长,ACM A和ACM B对体内Li_(210)细胞周期作用相同.  相似文献   

3.
The budding yeast, Saccharomyces cerevisiae has been a remarkably useful model system for the study of eukaryotic cell cycle regulation. Flow cytometric analysis of DNA content in budding yeast has become a standard tool for the analysis of cell cycle progression. However, popular protocols utilizing the DNA binding dye, propidium iodide, suffer from a number of drawbacks that confound accurate analysis by flow cytometry. Here we show the utility of the DNA binding dye, SYTOX Green, in the cell cycle analysis of yeast. Samples analyzed using SYTOX Green exhibited better coefficients of variation, improved linearity between DNA content and fluorescence, and decreased peak drift associated with changes in dye concentration, growth conditions or cell size.  相似文献   

4.
A population-balance mathematical model of microbial growth in a flow reactor is formulated which incorporates an asymmetric-division, budding-cycle model of coordinated cell and nuclear division cycles for the budding yeast Saccharomyces cerevisiae. Analytical solutions are obtained for limiting nutrient and cell-number concentrations in the reactor as functions of basic cell cycle parameters. Frequency functions for cell mass and DNA content in the resident yeast population are also derived under different assumptions concerning cell mass and DNA synthesis and bud scar accumulation. These results, which correspond to experimentally observable medium and population variables, provide new bases for evaluating budding-yeast-cell cycle models and for deducing kinetics of mass and DNA synthesis in single cells growing in steady-state, asynchronous populations.  相似文献   

5.
In the cell cycle of Paramecium there are three points of interaction between cell growth-related processes and the processes of macronuclear DNA replication and cell division: initiation of DNA synthesis, regulation of the rates of growth and DNA accumulation, and initiation of cell division. This study examines the regulation of the latter two processes by analysis of the response of each to abrupt changes in nutrient level brought about either by transferring dividing cells from a steady-state chemostat culture to medium with unlimited food, or by transferring well-fed dividing cells to exhausted medium. The rates of DNA accumulation and cell growth respond quickly to changes in nutrient level. The amounts of these cell components accumulated during the cell cycle following a shift in nutrient level are typical of those occurring during equilibrium growth under post-shift conditions. Commitment to division occurs at a fixed interval prior to fission that is similar in well-fed and nutrient-limited cells. Initiation of cell division in Paramecium is associated with accumulation of a threshold DNA increment, whose level is largely independent of nutritive conditions. The amount of DNA accumulated during the cell cycle varies with nutritional conditions because the rates of growth and DNA accumulation are affected by nutrient level; slowly growing cells accumulated relatively little DNA during the fixed interval between commitment to cell division and fission.  相似文献   

6.
Flow cytometry indicated that significant amounts of dsRNA were accumulated in HeLa S3 cells blocked at or near G1/S boundary by hydroxyurea (HU) or excess thymidine (TdR). The dsRNA/DNA ratio increased in these cells in a manner characteristic of unbalanced cell growth. In HU-treated cells, dsRNA content was maximal 16 hours after addition of the drug and did not change significantly during the next 24 hours. The DNA content in blocked cells increased by 10%. Cell viability assessed by colony formation in soft agar decreased exponentially in HU-treated cultures after 16 hours of incubation. Correlation between loss of cell viability and rate of cell proliferation after removal of HU was observed, as determined by cell count and analysis of cell cycle progression. In TdR-treated cultures cells slowly progressed into mid S-phase during 40 hours and dsRNA accumulation continued during this period. Cell viability was not significantly affected by treatment with excess TdR, indicating that unbalanced growth per se, as measured by dsRNA accumulation, is not lethal for the cells. After reversal of DNA synthesis inhibition by removal of the drug, cells treated with HU for 16 hours or TdR for 16–24 hours promptly progressed through the cell cycle. This progression was accompanied by accumulation of significant amounts of dsRNA. As a result, cells in G2 phase had a very high dsRNA content leading to retention of the unbalanced condition (increased dsRNA/DNA ratio) in the daughter cells. It is suggested that dsRNA accumulation in the cell is controlled to a certain degree by cell progression through the S phase. This type of control, evidently, was reflected in limited dsRNA accumulation in the cells blocked at or near G1/S border, in continuous dsRNA accumulation in the cells slowly progressing through S phase, and in accumulation of large amounts of dsRNA after renewal of progression through the S phase.  相似文献   

7.
The budding yeast, Saccharomyces cerevisiae has been a remarkably useful model system for the study of eukaryotic cell cycle regulation. Flow cytometric analysis of DNA content in budding yeast has become a standard tool for the analysis of cell cycle progression. However, popular protocols utilizing the DNA binding dye, propidium iodide, suffer from a number of drawbacks that confound accurate analysis by flow cytometry. Here we show the utility of the DNA binding dye, SYTOX Green, in the cell cycle analysis of yeast. Samples analyzed using SYTOX Green exhibited better coefficients of variation, improved linearity between DNA content and fluorescence, and decreased peak drift associated with changes in dye concentration, growth conditions or cell size.

Key Words:

Flow cytometry, Cell cycle, Saccharomyces cerevisiae, SYTOX Green, Propidium iodide  相似文献   

8.
Branzei D  Foiani M 《DNA Repair》2007,6(7):994-1003
DNA replication is an essential process that occurs in all growing cells and needs to be tightly regulated in order to preserve genetic integrity. Eukaryotic cells have developed multiple mechanisms to ensure the fidelity of replication and to coordinate the progression of replication forks. Replication is often impeded by DNA damage or replication blocks, and the resulting stalled replication forks are sensed and protected by specialized surveillance mechanisms called checkpoints. The replication checkpoint plays an essential role in preventing the breakdown of stalled replication forks and the accumulation of DNA structures that enhance recombination and chromosomal rearrangements that ultimately lead to genomic instability and cancer development. In addition, the replication checkpoint is thought to assist and coordinate replication fork restart processes by controlling DNA repair pathways, regulating chromatin structure, promoting the recruitment of proteins to sites of damage, and controlling cell cycle progression. In this review we focus mainly on the results obtained in budding yeast to discuss on the multiple roles of checkpoints in maintaining fork integrity and on the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.  相似文献   

9.
Sterigmatomyces halophilus is an unusual budding yeast in which daughter cells are formed, remote from the mother cell, on fine projections called sterigmata. Some fundamental properties of the cell cycle have been explored by separating cells from an exponentially growing culture into size, and thus age, classes by density-gradient centrifugation. Rate separations on high capacity, high resolution, equivolumetric gradients of sucrose, or, alternatively, isopycnic separations on gradients of Urografin revealed consistent and reproducible patterns of accumulation of DNA, RNA and protein through the cell cycle. Total DNA accumulation was stepwise, synthesis occurring late in the cycle, whilst protein accumulated continuously with no evidence for the discontinuities reported in some other lower eukaryotes. Total RNA accumulation, measured either colorimetrically or by long-term incorporation of radioactively-labelled uracil was transiently elevated early in the cycle and then accumulated continuously. A mathematical analysis of the volume distributions of the cells in fractions from the gradients showed that there is a hyperbolic relationship between cell age and size but that, to a first approximation, measurements of cell size (and density) are direct measures of age. The results are discussed with reference to (1) the unusually high buoyant density of this yeast, (2) the resolution of zonal cell separation methods and (3) macromolecular accumulation in the cell cycles of other eukaryotic micro-organisms.  相似文献   

10.
The effects of canavalmine, a structural analogue of spermine, were studied in cultured murine erythroleukemia cells 745A. Canavalmine exerted an inhibition on murine erythroleukemia cell growth at concentrations over 50 microM. The cell proliferation was, however, restored when canavalmine was removed from the culture medium after 24 h. Treatment of the cells with 500 microM canavalmine blocked the accumulation of intracellular polyamines. Especially, both spermine and spermidine levels were reduced below 50% of those in control cells after 48 h and below 30% after 96 h. The decreased contents of spermine and spermidine were compensated for by the increased content of canavalmine incorporated within the cells. In these cells, RNA and protein contents also decreased. The degree of growth inhibition by canavalmine during the cell cycle was examined using synchronized cells. Serum-induced growth stimulation was inhibited by canavalmine most effectively in the cells at G1 phase prior to DNA synthesis. The antiproliferative effect decreased when canavalmine was added to the cells after commencement of DNA synthesis. The results suggest that the growth-inhibitory action of canavalmine on murine erythroleukemia cells is most likely due to an inhibition of early events of the cell cycle, possibly due to the interference of a structure-specific function of spermidine and/or spermine on DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号