首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Gastrointestinal tumorigenesis in Smad4 (Dpc4) mutant mice   总被引:3,自引:0,他引:3  
Taketo MM  Takaku K 《Human cell》2000,13(3):85-95
The SMAD4 (Dpc4) gene plays a key role in the TGF-beta signaling pathway. We recently inactivated the mouse homolog Smad4. The homozygous mutants were embryonic lethals, whereas the heterozygotes were viable and fertile. Although young heterozygotes were normal, old mice developed gastric and duodenal polyps similar to those found in human juvenile polyps characterized by abundant stroma and eosinophilic infiltrations. These data are consistent with the reports that a subset of human juvenile polyposis kindreds carry germline mutations in the SMAD4 gene. We then introduced the Smad4 mutation into the Apc delta 716 knockout mice, a model for human familial adenomatous polyposis. Because both Apc and Smad4 are located on mouse chromosome 18, we constructed by meiotic recombination, compound heterozygotes carrying both mutations on the same chromosome. In such mice, intestinal polyps developed into more malignant tumors than those in the simple Apc delta 716 heterozygotes, showing an extensive stromal cell proliferation and strong submucosal invasion. These results indicate that mutations in SMAD4 play a significant role in the malignant progression of colorectal tumors.  相似文献   

2.
The SMAD4 gene plays a key role in the TGF-beta signaling pathway. We inactivated its mouse homolog Smad4. The homozygous mutants were embryonically lethal, whereas the heterozygotes were viable and fertile. Although young heterozygotes appeared normal, old mice developed gastric and duodenal polyps similar to human juvenile polyps characterized by abundant stroma and eosinophilic infiltrations. These data are consistent with the reports that a subset of human juvenile polyposis kindreds carry germline mutations in the SMAD4 gene. We then introduced the Smad4 mutation into the Apc(Delta716) knockout mice, a model for human familial adenomatous polyposis. Because both Apc and Smad4 are located on mouse chromosome 18, we constructed by meiotic recombination compound heterozygotes carrying both mutations on the same chromosome. In such mice, intestinal polyps developed into more malignant tumors than those in the simple Apc(Delta716) heterozygotes, showing an extensive stromal cell proliferation and strong submucosal invasion. These results indicate that mutations in SMAD4 play a significant role in the malignant progression of colorectal tumors.  相似文献   

3.

Background

Biallelic germline mutations in the MYH gene cause MYH-associated polyposis (MAP) disease, an autosomal recessive form of inherited colorectal cancer. People with MAP tend to develop attenuated multiple adenomatous colon polyps during their lifetime and will have an increased risk of colorectal cancer. Contrary to familial adenomatous polyposis, the number of adenomas is often lower in MAP (from 5 to 100), and even some patients have recently been reported with no identified adenomas.There have been many investigations into MAP that have been conducted in many different countries. Currently there is limited data on MAP in Morocco, and it is reasonable to think, that the prevalence of this form of genetic predisposition is as high as other autosomal recessive genetic diseases found in countries with high rates of consanguinity.The aim of this study is to examine the frequency of MYH mutations in colorectal cancer and/or attenuated polyposis in Moroccan patients.

Patients and methods

The study population consisted of 62 patients; 52 with colorectal cancer, three of them had attenuated polyposis (2 to 99 adenomatous polyps). 10 other patients were referred to our department for polyposis without colorectal cancer.We carried out DNA analysis in 62 patients to screen for the three recurrent mutations c.494A > G (p.Tyr165Cys), c.1145 G > A (p.Gly382Asp) and c.1185_1186dup, p.Glu396GlyfsX43, whereas 40 subjects were screened for germline MYH mutations in the whole coding sequence of the MYH gene by direct DNA sequencing. All these 40 patients, except two, had colorectal cancer without polyposis.

Results

Three patients with colorectal cancer and attenuated polyposis carried biallelic mutations in the MUTYH gene one with the c.494 A > G mutation, one with the c.1105delC mutation, one with the c.1145 G > A mutation. One patient with 25 adenomas without colorectal cancer carried the c.1145 G > A mutation at a homozygote state and one patient with 3 polyps was heterozygote for the mutation c.1145 G > A. No biallelic mutations of MYH gene were detected in colorectal cancer patients and in patients with small number (< 5) of polyps without colorectal cancer.

Conclusion

We report the first biallelic MYH mutations in four Moroccan patients with clinical criteria of MAP; three of them had colorectal cancer with attenuated polyposis. No MYH mutations were found in colorectal patients without polyposis.Despite the relatively small sample size of the current study, our findings suggest that the MAP is not a frequent cause of colon cancer in Morocco as we had expected, and the molecular analysis of MYH gene should be restricted to patients displaying the classical phenotype of MAP.  相似文献   

4.
5.
Up to 5% of colorectal cancer cases are caused by a monogenic inherited disposition. Among these, hereditary nonpolyposis colorectal cancer (Lynch syndrome, HNPCC) accounts for 2–3% and adenomatous polyposis syndromes (familial adenomatous polyposis, FAP and MUTYH-associated polyposis, MAP) for about 1% of cases. Hamartomatous polyposis syndromes (juvenile polyposis syndrome, Peutz-Jeghers syndrome and Cowden syndrome) are rare disorders that are also associated with an increased colorectal cancer risk. The genetic basis is largely known for the tumour syndromes mentioned above. The identification of the causative germline mutation in the respective DNA repair genes (e.g. in HNPCC and MAP) or tumour suppressor genes (FAP or hamartomatous polyposis syndromes) allows confirmation of the diagnosis in affected individuals and provides predictive diagnostics for their healthy relatives. To achieve a targeted and useful molecular diagnostics, it is important that the clinician provides a detailed characterisation of the clinical picture; moreover, family history may also give a hint of the underlying gene defect. The screening of tumour tissue for the presence of a mismatch repair defect should precede mutation analysis in suspected cases of HNPCC, as it is difficult to differentiate between this condition and sporadic colorectal cancer. In contrast, mutation analysis can be directly performed in polyposis syndromes provided the syndrome has been correctly classified by the histology of polyps.  相似文献   

6.
Inherited mutations of the APC gene predispose carriers to multiple adenomatous polyps of the colon and rectum and to colorectal cancer. Mutations located at the extreme 5' end of the APC gene, however, are associated with a less severe disease known as attenuated adenomatous polyposis coli (AAPC). Many individuals with AAPC develop relatively few colorectal polyps but are still at high risk for colorectal cancer. We report here the identification of a 5' APC germline mutation in five separately ascertained AAPC families from Newfoundland, Canada. This disease-causing mutation is a single basepair change (G to A) in the splice-acceptor region of APC intron 3 that creates a mutant RNA without exon 4 of APC. The observation of the same APC mutation in five families from the same geographic area demonstrates a founder effect. Furthermore, the identification of this germline mutation strengthens the correlation between the 5' location of an APC disease-causing mutation and the attenuated polyposis phenotype.  相似文献   

7.
Pro-metastasis function of TGFbeta mediated by the Smad pathway   总被引:2,自引:0,他引:2  
The transforming growth factor beta (TGFbeta) signaling pathway plays a vital role in the development and homeostasis of normal tissues. Abnormal function of this pathway contributes to the initiation and progression of cancer. Smad proteins are key signal transducers of the TGFbeta pathway and are essential for the growth suppression function of TGFbeta. Smads are bona fide tumor suppressors whose mutation, deletion, and silencing are associated with many types of human cancer. However, the involvement and functional mechanism of Smad proteins in cancer metastasis are poorly defined. Recent studies using genetically modified cancer cells and mouse tumor models have provided concrete evidence for a Smad-dependent mechanism for metastasis promotion by TGFbeta. Understanding the dual roles of Smad proteins in tumor initiation and progression has important implications for cancer therapeutics.  相似文献   

8.
Rowley PT 《Genetic testing》2004,8(4):421-430
The principal Mendelian disorders predisposing to colorectal cancer are familial adenomatous polyposis (FAP) and hereditary nonpolyposis colorectal cancer (HNPCC). FAP is caused by mutations in the adenomatous polyposis coli (APC) gene. HNPCC is caused by a mutation in one of at least five mismatch repair genes. It is important to identify individuals with these conditions because colon cancer will occur in at least 80% and onset is earlier than in the general population. Potential benefits of identification include improved compliance with recommended surveillance, early detection of polyps, reduction in cancer mortality, and reassurance for relatives found to be negative with attendant savings in the time and expense of surveillance. For classic FAP, the large number of polyps readily identifies affected persons. For HNPCC, identification of individuals meriting DNA sequencing requires either recognition of a suspect family history or finding high microsatellite instability in a tumor. Individuals accepting the offer of genetic counseling and DNA testing often have more cancers in their family, are motivated to inform relatives, have a larger social network, and have more confidence in their coping ability. Individuals who decline are often concerned about their own or their family's emotional reaction or fear discrimination.  相似文献   

9.
Colorectal cancer is one of the leading causes of cancer-related death in the Western society, and the incidence is rising. Rare hereditary gastrointestinal polyposis syndromes that predispose to colorectal cancer have provided a model for the investigation of cancer initiation and progression in the general population. Many insights in the molecular genetic basis of cancer have emerged from the study of these syndromes. This review discusses the genetics and clinical manifestations of the three most common syndromes with gastrointestinal polyposis and an increased risk of colorectal cancer: familial adenomatous polyposis (FAP), juvenile polyposis (JP) and Peutz-Jeghers syndrome (PJS).  相似文献   

10.
Adenomas and hamartomas, two genetically transmitted histologic types of gastrointestinal polyposis, are associated in syndromes with extragastrointestinal manifestations. Adenomas that predispose to adenocarcinoma are basic to familial polyposis coli, the Gardner syndrome and the Turcot syndrome. Gastrointestinal polyps and extragastrointestinal lesions serve as a warning, providing time for diagnosis and treatment of adenomas to prevent their malignant transformation in patients and their relatives. Hamartomas with no malignancy potential, but having a tendency toward bleeding and bowel obstruction, are associated with the Peutz-Jeghers syndrome, juvenile polyposis, multiple hamartoma syndrome, basal-cell nevus syndrome and the Cronkhite-Canada syndrome. Most of these lesions and syndromes follow the inheritance pattern of a single autosomal dominant gene.  相似文献   

11.
Mutations of the Smad4 gene, a member of a group of TGF-beta signal transduction components, occur in several types of cancer suggesting that its inactivation significantly affects TGF-beta responsiveness in these tumors. To further investigate the role of Smad4 with respect to TGF-beta signaling and carcinogenesis, we re-expressed the Smad4 gene in the Smad4-deficient cancer cell line FaDu by microcell-mediated chromosome transfer (MMCT) and retroviral infection to closely approximate physiological protein levels. The Smad4-expressing FaDu clones were then evaluated for TGF-beta responsiveness to assess the role of Smad4 in TGF-beta-induced growth inhibition and target gene regulation. We found that the re-expression of the Smad4 gene by either method partially restored TGF-beta responsiveness in FaDu cells with respect to both growth inhibition and expression of p21WAF1/CIP1 and p15INK4B. However, only the microcell hybrids showed growth retardation in organotypic raft culture and an enhanced ability to upregulate fibronectin. In contrast, the re-expression of Smad4 by either method failed to suppress tumorigenicity. These results suggest that in addition to a homozygous deletion of Smad4, FaDu cells contain additional defects within the TGF-beta signaling pathway, thereby limiting the extent of TGF-beta responsiveness upon Smad4 re-expression and perhaps accounting for the inability to induce p15INK4B to a high level. They also demonstrate the advantages of providing a physiological extracellular environment, when assessing TGFbeta responsiveness.  相似文献   

12.
The transforming growth factor-beta (TGF-beta)-Smad signaling pathway has an important role in carcinogenesis. To study the frequency and mechanism of functional impairment of this pathway in human gastrointestinal cancers, we used a reporter assay to examine the response of 38 cell lines (11 colorectal, 9 pancreatic, 10 gastric, and 8 hepatic cancers) to TGF-beta. We then analyzed TGF-beta type II receptor (T beta RII) gene, immunoblots of Smad4, and restoration of the pathway by rescuing T beta R or Smad. We observed impaired signaling in 91% of colorectal, 67% of pancreatic, and 40% of gastric cancer cell lines, but in none of the hepatic cancer cells. We suggest that this pathway does not function as a tumor suppressor in hepatic carcinogenesis. The impairment is due to inactivation of T beta RII and Smad4 in colorectal and pancreatic cancers. However, because the signal was not recovered by rescuing T beta R or Smad genes in TGF-beta-response-defective gastric cancer cell lines, we suggest that novel molecules or mechanisms are involved in the impaired pathway in some gastric cancers.  相似文献   

13.
Germ-line mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP). Genotype-phenotype correlation studies in patients with FAP have demonstrated associations of certain variants of the disease with mutations at specific sites within the APC gene. In a large FAP family, we identified a frameshift mutation located in the alternatively spliced region of exon 9. Phenotypic studies of affected family members showed that the clinical course of FAP was delayed, with gastrointestinal symptoms and death from colorectal carcinoma occurring on average 25 and 20 years later than usual, respectively. The numbers of colorectal adenomas differed markedly among affected individuals and the location of colorectal cancer lay frequently in the proximal colon. Our findings suggest that the exon 9 mutation identified in the pedigree is associated with late onset of FAP. The atypical phenotype may be explained by the site of the mutation in the APC gene. Analysis of the APC protein product indicated that the exon 9 mutation did not result in a detectable truncated APC protein. Given the location of the mutation within an alternatively spliced exon of APC, it is conceivable that normal APC proteins are produced from the mutant allele by alternative splicing.  相似文献   

14.
Familial colorectal cancer (CRC) is noted in about 15% of incident CRC cases, and at times is hallmarked by an age at diagnosis less than 50 years. Familial adenomatous polyposis (FAP) and hereditary non-polyposis colon cancer (HNPCC) account for about 40% of familial cases. Thus, the majority of familial and early-onset CRC remain genetically elusive. Similarly, the majority of familial and early onset endometrial cancer (EC), the most prevalent extracolonic tumor in HNPCC, are genetically undefined. An attractive candidate is the hMSH6 gene. Israeli patients with early onset (age under 50 years) (n = 44) and familial nonsyndromic (n = 23) CRC, and women with familial clustering of EC or CRC (n = 12), and those diagnosed with EC at, or under, the age of 50 years (n = 5) were genotyped for germ-line mutations within the hMSH6 gene. Exon-specific PCR was followed by denaturing gradient gel electrophoresis (DGGE) analysis, complemented by DNA sequencing of abnormally migrating fragments. No patients displayed a truncating mutation, and 1 CRC patient harbored a novel missense mutation (V878A). In addition, 6 previously described polymorphisms were detected. In conclusion, mutations in the hMSH6 gene occur uncommonly in Israeli patients with familial and early-onset CRC and EC.  相似文献   

15.
Smad4 is a tumor suppressor gene primarily involved in carcinogenesis of the pancreas and colon. The functional inactivation of Smad4 is a late step genetically. In pancreatic carcinogenesis, loss of Smad4 marks the transition to invasive growth. In colorectal cancers, the frequency of Smad4 inactivation is markedly increased in metastatic cancers. We have established cell biological models, re-expressing Smad4 in deficient human cancer cells, in which we could show that Smad4 is adequate to suppress tumor growth through suppression of angiogenic and invasive properties. Thus, pairs of Smad4-re-expressing and Smad4-deficient cells are prone to model the progression from premalignant stages to carcinomas in the carcinogenic process and may provide access to Smad4 targets of high clinical relevance. We present here a "differential secretome analysis", comparing all the proteins released in vitro from the Smad4-deficient and Smad4-re-expressing SW480 human colon carcinoma cells. The differential secretome catalog comprises more than 25 proteins including proteases and protease inhibitors, as well as established tumor biomarkers. In conclusion, this approach proved to be a sensitive tool to specifically detect Smad4 targets relevant for tumor-stroma interactions. It is also able to reflect complex alterations of cellular physiology. Moreover, the results support our hypothesis that human tumor markers detectable in serum may be identified through differential secretome analyses.  相似文献   

16.
家族性腺瘤息肉病(FAP)是第二常见的遗传性结直肠癌综合征,多在青春期发病,发病率约1/10000,主要临床表现为大肠中多发的腺瘤性息肉,是一种结直肠癌的癌前病变,如果不予治疗,几乎100%的患者会发展成为结直肠癌。一直以来,FAP被认为是一种常染色体显性遗传疾病,发病由APC基因胚系突变引起。根据临床特点的不同,FAP患者可以分为经典型FAP(CFAP)和轻表型FAP(AFAP)。然而近年来,在一些无APC基因胚系突变的FAP患者中发现了Mut YH基因的双等位基因突变。这种由于Mut YH基因双等位基因突变而无APC生殖突变所引起的临床综合征定义为Mut YH基因相关性息肉病[2](MAP)。MAP为常染色体隐性遗传,是一种特殊类型的FAP。另外,很多研究表明,APC基因的突变位点与结肠腺瘤病的严重程度、癌变的风险程度和某些肠外表现相关。MAP的发现和对FAP基因型-表型相关性的研究,完善了对FAP遗传病因学的认识,对于FAP患者及高危亲属的合理防治和预后具有重要的意义。  相似文献   

17.
The c-myc oncogene plays an important role in tumorigenesis and is frequently deregulated in many human cancers, including gastrointestinal cancers. In humans, mutations of the adenomatous polyposis coli (Apc) tumor suppressor gene occur in most colorectal cancers. Mutation of Apc leads to stabilization of beta-catenin and increases in beta-catenin target gene expression (c-myc and cyclin D1), whose precise functional significance has not been examined using genetic approaches. Apc(Min/+) mice are a model of familial adenomatous polyposis and are heterozygous for an Apc truncation mutation. We have developed a model for examining the role of c-Myc in Apc-mediated tumorigenesis. We crossed c-myc(+/-) mice to Apc(Min/+) to generate Apc(Min/+) c-myc(+/-) animals. The compound Apc(Min/+) c-myc(+/-) mice were used to evaluate the effect of c-myc haploinsufficiency on the Apc(Min/+) phenotype. We observed a significant reduction in tumor numbers in the small intestine of Apc(Min/+) c-myc(+/-) mice compared with control Apc(Min/+) c-myc(+/+) mice. In addition, we observed one to three polyps per colon in Apc(Min/+) c-myc(+/+) mice, whereas only two lesions were observed in the colons of Apc(Min/+) mice that were haploinsufficient for c-myc. Moreover, reduction in c-myc levels resulted in a significant increase in the survival of these animals. Finally, we observed marked decreases in vascular endothelial growth factor, EphA2, and ephrin-B2 expression as well as marked decreases in angiogenesis in intestinal polyps in Apc(Min/+) c-myc(+/-) mice. This study shows that c-Myc is critical for Apc-dependent intestinal tumorigenesis in mice and provides a potential therapeutic target in the treatment of colorectal cancer.  相似文献   

18.
Smad4 is a central mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in mammary gland development and neoplasia, we disrupted this gene in mammary epithelium using a Cre-loxP approach. Smad4 is expressed in the mammary gland throughout development; however, its inactivation did not cause abnormal development of the gland during the first three pregnancies. Instead, lack of Smad4 gradually induced cell proliferation, alveolar hyperplasia and transdifferentiation of mammary epithelial cells into squamous epithelial cells. Consequently, all mutant mice developed squamous cell carcinoma and/or mammary abscesses between 5 and 16 months of age. We demonstrated that absence of Smad4 resulted in beta-catenin accumulation at onset and throughout the process of transdifferentiation, implicating beta-catenin, a key component of the Wnt signaling pathway, in the development of squamous metaplasia in Smad4-null mammary glands. We further demonstrated that TGFbeta1 treatment degraded beta-catenin and induced epithelial-mesenchymal transformation in cultured mammary epithelial cells. However, such actions were blocked in the absence of Smad4. These findings indicate that TGFbeta/Smad4 signals play a role in cell fate maintenance during mammary gland development and neoplasia.  相似文献   

19.
20.
The Smad2 protein plays an essential role in the transforming growth factor-beta (TGF-beta) signaling pathway. This pathway mediates growth inhibitory signals from the cell surface to the nucleus. Although Smad2 protein is significantly mutated in human cancers, there is no definitive evidence implicating Smad2 as a tumor-suppressor gene. Here we show that overexpression of the tumor-derived missense mutation Smad2.D450E, an unphosphorylable form of Smad2 found in colorectal and lung cancers, did not abolish the TGF-beta-mediated growth arrest, suggesting that resistance to the growth-inhibiting effects of TGF-beta exhibited by human tumors cannot be linked to the inactivation of Smad2 protein. In contrast, overexpression of Smad2.D450E induces cellular invasion, and this effect was enhanced by TGF-beta. A similar invasive phenotype was obtained in cells expressing another inactivating mutation in Smad2 (Smad2.P445H) found in colorectal cancer. These findings indicate that genetic defects in Smad2 are sufficient to confer the invasion-promoting effect of TGF-beta and reveal that TGF-beta acts through Smad2 to induce cellular invasion by a novel mechanism that is independent of Smad2 phosphorylation by the activated TGF-beta type I receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号