首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We isolated members of the retroposon family p-SINE1 in rice and found that one member contained an insertion. A 3-bp sequence at the insertion site within p-SINE1 appeared duplicated. The insertion sequence, 1536 bp in length, carried imperfect inverted repeats of about 13 bp at its termini which begin with 5′-CACTA--- -3′; these repeats are similar to those found in members of theEn/Spm transposable element family. These results indicate that the insertion sequence is a transposable element belonging to theEn/Spm family and is thus namedTnr3 (transposable element inrice no.3). In fact,Tnr3 carried long subterminal regions containing direct and inverted repeats of short DNA sequences of 15 bp, another characteristic of theEN/Spm family. The subterminal repeat sequences inTnr3 are, however, of two kinds, although they share homology with each other.Tnr3 and its relatives were present in multiple copies in rice. Considering the length ofTnr3, it cannot represent an autonomous type element, but is a non-autonomous element probably derived by deletion from an autonomous transposon.  相似文献   

2.
The 6.4 kb transposable element Tpn1 belonging to the En/Spm family was found within one of the DFR (dihydroflavonol-4-reductase) genes for anthocyanin biosynthesis in a line of Japanese morning glory (Pharbitis nil) bearing variegated flowers. Sequencing of the Tpn1 element revealed that it is 6412 by long and carries 28-bp perfect terminal inverted repeats. Its subterminal repetitive regions, believed to be the cis-acting sequences for transposition, show striking structural features. Twenty-two copies of the 10-bp sequence motif GACAACGGTT can be found as direct or inverted repeats within 650 by of the 5 end of the element, and 33 copies of the sequence motif lie within 800 by of the 3 terminus. All these 22 copies of the sequence motif near the 5 terminus and 30 copies in the 3 terminal region are arranged as inverted repeats and 3–8 by AT-rich sequences are detected between these inverted repeats. In addition, four copies of 122-bp tandem repeats and six copies of 104-bp tandem repeats are present in the 5 and 3 subterminal repetitive regions, respectively. No large open reading frame characteristic of autonomous elements of the En/Spm family can be detected within the element. The results are discussed with respect to heritable changes in flower variegation in this line of Japanese morning glory.  相似文献   

3.
Eight independently isolated unstable alleles of theOpaque2 (O2) locus were analysed genetically and at the DNA level. The whole series of mutations was isolated from a maize strain carrying a wild-typeO2 allele and the transposable elementActivator (Ac) at thewx-m7 allele. Previous work with another unstable allele of the same series has shown that it was indeed caused by the insertion of anAc element. Unexpectedly, the remaining eight mutations were not caused by the designatedAc element, but by other insertions that are structurally similar or identical to one of two different autonomous transposable elements. Six mutations were caused by the insertion of a transposable element of theEnhancer/Suppressor-Mutator (En/Spm) family. Two mutations were the result of the insertion of a transposable element of theBergamo (Bg) family. Genetic tests carried out with plants carrying the unstable mutations demonstrated that all were caused by the insertion of an autonomous transposable element.  相似文献   

4.
5.
Tnr1 (235 bp long) is a transposable element in rice. Polymerase chain reactions (PCRs) done with a primer(s) that hybridizes to terminal inverted repeat sequences (TIRs) of Tnr1 detected new Tnr1 members with one or two insertions in rice genomes. Six identified insertion sequences (Tnr4, Tnr5, Tnr11, Tnr12, Tnr13 and RIRE9) did not have extensive homology to known transposable elements, rather they had structural features characteristic of transposable elements. Tnr4 (1767 bp long) had imperfect 64-bp TIRs and appeared to generate duplication of a 9-bp sequence at the target site. However, the TIR sequences were not homologous to those of known transposable elements, indicative that Tnr4 is a new transposable element. Tnr5 (209 bp long) had imperfect 46-bp TIRs and appeared to generate duplication of sequence TTA like that of some elements of the Tourist family. Tnr11 (811 bp long) had 73-bp TIRs with significant homology to those of Tnr1 and Stowaway and appeared to generate duplication of sequence TA, indicative that Tnr11 is a transposable element of the Tnr1/Stowaway family. Tnr12 (2426 bp long) carried perfect 9-bp TIRs, which began with 5'-CACTA- -3' from both ends and appeared to generate duplication of a 3-bp target sequence, indicative that Tnr12 is a transposable element of the En/Spm family. Tnr13 (347 bp long) had 31-bp TIRs and appeared to generate duplication of an 8-bp target sequence. Two sequences, one the transposon-like element Crackle, had partial homology in the Tnr13 ends. All five insertions appear to be defective elements derived from autonomous ones encoding the transposase gene. All had characteristic tandem repeat sequences which may be recognized by transposase. The sixth insertion sequence, named RIRE9 (3852 bp long), which begins with 5'-TG- -3' and ends with 5'- -CA-3', appeared to generate duplication of a 5-bp target sequence. These and other structural features indicate that this insertion is a solo LTR (long terminal repeat) of a retrotransposon. The transposable elements described above could be identified as insertions into Tnr1, which do not deleteriously affect the growth of rice cells.  相似文献   

6.
The cloning and characterization ofGandalf, a new DNA-transposing mobile element obtained from theDrosophila koepferae (repleta group) genome is described. A fragment ofGandalf was found in a middle repetitive clone that shows variable chromosomal localization. Restriction, Southern blot, PCR and sequencing analyses have shown that mostGandalf copies are about 1 kb long, are flanked by 12 by inverted terminal repeats and contain subterminal repetitive regions on both sides of the element. As with other elements of the DNA-transposing type (known as the Ac family), theGandalf element generates 8 by direct duplications at the insertion point. Coding region analysis has shown that the longer open reading frame found inGandalf copies could encode part of a protein. However, whether or not the 1 kb copies of the element are actually the active transposons remains to be elucidated.Gandalf shows a very low copy number inD. buzzatii, a sibling species ofD. koepferae. An attempt to induce interspecific hybrid dysgenesis in hybrids of these two species has been unsuccessful.  相似文献   

7.
The 6.4 kb transposable element Tpn1 belonging to the En/Spm family was found within one of the DFR (dihydroflavonol-4-reductase) genes for anthocyanin biosynthesis in a line of Japanese morning glory (Pharbitis nil) bearing variegated flowers. Sequencing of the Tpn1 element revealed that it is 6412 by long and carries 28-bp perfect terminal inverted repeats. Its subterminal repetitive regions, believed to be the cis-acting sequences for transposition, show striking structural features. Twenty-two copies of the 10-bp sequence motif GACAACGGTT can be found as direct or inverted repeats within 650 by of the 5′ end of the element, and 33 copies of the sequence motif lie within 800 by of the 3′ terminus. All these 22 copies of the sequence motif near the 5′ terminus and 30 copies in the 3′ terminal region are arranged as inverted repeats and 3–8 by AT-rich sequences are detected between these inverted repeats. In addition, four copies of 122-bp tandem repeats and six copies of 104-bp tandem repeats are present in the 5′ and 3′ subterminal repetitive regions, respectively. No large open reading frame characteristic of autonomous elements of the En/Spm family can be detected within the element. The results are discussed with respect to heritable changes in flower variegation in this line of Japanese morning glory.  相似文献   

8.
Transposable elements have been widely used as mutagens in many organisms. Among them, the maize transposable element En/Spm has been shown to transpose efficiently in several plant species including the model plant Arabidopsis, where it has been used for large-scale mutagenesis. To determine whether we could use this transposon as a mutagen in the model legume plant Medicago truncatula, we tested the activity of the autonomous element, as well as two defective elements, in this plant, and in Arabidopsis as a positive control. In agreement with previous reports, we observed efficient excision of the autonomous En/Spm element in A. thaliana. This element was also active in M. truncatula, but the transposition activity was low and was apparently restricted to the tissue culture step necessary for the production of transgenic plants. The activity of one of the defective transposable elements, dSpm, was very low in A. thaliana and even lower in M. truncatula. The use of different sources of transposases suggested that this defect in transposition was associated with the dSpm element itself. Transposition of the other defective element, I6078 , was also detected in M. truncatula, but, as observed with the autonomous element, transposition events were very rare and occurred during tissue culture. These results suggest that the En/Spm element is rapidly inactivated in the regenerated plants and their progeny, and therefore is not suitable for routine insertion mutagenesis in M. truncatula.Communicated by M.-A. Grandbastien  相似文献   

9.
A miniature inverted-repeat transposable element (MITE), designated as Hikkoshi, was previously identified in the null Wx-A1 allele of Turkish bread wheat lines. This MITE is 165 bp in size and has 12-bp terminal inverted repeats (TIRs) flanked by 8-bp target site duplications (TSDs). Southern and PCR analyses demonstrated the presence of multiple copies of Hikkoshi in the wheat genome. Database searches indicated that Hikkoshi MITEs are also present in barley, rice and maize. A 3.4-kb element that has Hikkoshi-like TIRs flanked by 8-bp TSDs has now been identified in the rice genome. This element shows high similarity to the 5 subterminal region of the wheat Hikkoshi MITE and contains a transposase (TPase) coding region. The TPase has two conserved domains, ZnF_TTF and hATC, and its amino acid sequence shows a high degree of homology to TPases encoded by Tip100 transposable elements belonging to the hAT superfamily. We designated the 3.4-kb element as OsHikkoshi. Several wheat clones deposited in EST databases showed sequence similarity to the TPase ORF of OsHikkoshi. The sequence information from the TPase of OsHikkoshi will thus be useful in isolating the autonomous element of the Hikkoshi system from wheat.  相似文献   

10.
Summary The two components of theBg-rbg transposable element system of maize have been cloned. TheBg element, isolated from the mutable allelewx-m32 :: Bg is inserted in the intron of theWaxy (Wx) gene between exons 12 and 13. The length of the element is of 4869 bp.Bg has 5 by terminal inverted repeats, and generates upon insertion an 8 by direct duplication of the target sequence. Both ends of theBg element contain a 76 by direct repeat adjacent to the terminal inverted repeats. The hexamer motif TATCGkC G is here repeated several times in direct or inverse orientation. Therbg element was isolated from the mutable alleleo2m(r) where it is located in the promoter region of theOpaque-2 (O2) gene.rbg is approximately 4.5 kb in length, has terminal inverted repeats identical to those of theBg element, and is also flanked by an 8 by direct duplication at the target site. LikeBg, rbg carries the 76 by direct repeats. Restriction enzyme analysis reveals that, compared toBg, the receptor element is distinguishable by small deletion and insertion events. Sequence data indicate that not more than 75% homology exists at the DNA level between therbg element and the autonomousBg element.  相似文献   

11.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   

12.
A transposable element has been isolated from the industrially important fungus Aspergillus niger (strain N402). The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. It had inserted at a TA site and appeared to have duplicated the target site upon insertion. The isolated element was found to be 4798 by in length and contained 37-bp inverted, imperfect, terminal repeats (ITRs). The sequence of the central region of the element revealed an open reading frame (designated ORF1) which showed similarity, at the amino acid level, to the transposase of the Tc1/mariner class of DNA transposons. Another sequence within the central region of the element showed similarity to the 3 coding and downstream untranslated region of the amyA gene of A. niger. Sequence homology and structural features indicate that this element, which has been named Ant1 (A. niger transposon 1), is related to the Tc1/mariner group of DNA transposons. Ant1 is apparently present as a single copy in strain N402 of A. niger.  相似文献   

13.
Specific binding ofNicotiana nuclear protein(s) to subterminal regions of theAc transposable element was detected using gel mobility shift assays. A sequence motif (GGTAAA) repeated in both terminal regions ofAc, was identified as the protein binding site. Mutation of two nucleotides in this motif was sufficient to abolish binding. Based on a series of competition assays, it is deduced that there is cooperative binding between two repeats, each similar to the GGTAAA motif. The binding protein is probably similar to a previously characterized maize protein which binds to a GGTAAA-containing motif located in the ends ofMutator. Moreover, we show that DNA fromDs1 competes for protein binding toAc termini, and we show, by sequence analysis, that GGTAAA binding sites are present in the terminal region ofTgm1, Tpn1, En/Spm, Tam3 andDs1-like elements. This suggests that the binding protein(s) might be involved in the transposition process.  相似文献   

14.
This review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.  相似文献   

15.
An insertion sequence 418 bp in length was found in one member of rice retroposon p-SINE1 in Oryza glaberrima. This sequence had long terminal inverted repeats (TIRs) and is flanked by direct repeats of a 9-bp sequence at the target site, indicative that the insertion sequence is a rice transposable element, which we named Tnr8. Interestingly, each TIR sequence consisted of a unique 9-bp terminal sequence and six tandem repeats of a sequence about 30 bp in length, like the foldback transposable element first identified in Drosophila. A homology search of databases and analysis by PCR revealed that a large number of Tnr8 members with sequence variations were present in the rice genome. Some of these members were not present at given loci in several rice species with the AA genome. These findings suggest that the Tnr8 family members transposed long ago, but some appear to have mobilized after rice strains with the AA genome diverged. The Tnr8 members are thought to be involved in rearrangements of the rice genome.  相似文献   

16.
A 1.2 kb DNA sequence, flanked by a potential seven base target-site duplication, was found inserted into a TOC1 transposable element from Chlamydomonas reinhardtii. The insertion sequence, named TOC2, is a member of a family of repeated DNA sequences that is present in all the C. reinhardtii strains tested. It resembles class II transposable elements: it possesses short 14 bp imperfect terminal repeats that begin AGGAGGGT, and sub-terminal direct repeats located within 250 bp of the termini. No large open reading frames were found. The terminal bases and length of target-site duplication are important in classifying transposable elements. On this basis TOC2 does not fall readily into existing families of class II transposable elements found in plants.  相似文献   

17.
The region immediately 3 of histidine-3 has been cloned and sequenced from two laboratory strains of the ascomycete fungus Neurospora crassa; St Lawrence 74A and Lindegren, which have different derivations from wild collections. Amongst the differences distinguishing these sequences are insertions ranging in size from 20 to 101 by present only in St Lawrence. The largest of these is flanked by a 3 by direct repeat, has terminal inverted repeats (TIR) and shares features with several known transposable elements. At 98 bp, it may be the smallest transposable element yet found in eukaryotes. There are multiple copies of the TIR in the Neurospora genome, similar but not identical to the one sequenced. PCR amplification of Neurospora genomic DNA, using 26 by of the TIR as a single primer, gave products of discrete sizes ranging from 100 by to about 1.3 kb, suggesting that the element isolated (Guest) may be a deletion derivative of a family of larger transposable elements. Guest appears to be the first transposable element reported in fungi that is not a retrotransposon.  相似文献   

18.
A transposon tagging system for heterologous hosts, based on the maize En/Spm transposable element, was developed in transgenic tobacco. In this system, the two En-encoded trans-acting factors necessary for excision are expressed by fusing their cDNAs to the CaMV 35S promoter. The dSpm receptor component is inserted in the 5-untranslated leader of the bar gene. Germinal revertants can therefore be selected by seed germination on L-PPT-containing medium or by spraying seedlings with the herbicide Basta. Using this bar-based excision reporter construct, an average frequency of germinal excision of 10.1% was estimated for dSpm-S, an En/Spm native internal deletion derivative. Insertion of En-foreign sequences in a receptor, such as a DHFR selectable marker gene in dSpm-DHFR, does not abolish its capacity to transpose. However, dSpm-DHFR has a lower frequency of somatic and germinal excision than dSpm-S. Revertants carrying a transposed dSpm-DHFR element can be selected with methotrexate. Germinal excision is frequently associated with reinsertion but, as in maize, dSpm has a tendency to integrate at chromosomal locations linked to the donor site. Concerning the timing of excision, independent germinal transpositions are often found within a single seed capsule. All activity parameters analysed suggest that transposon tagging with this system in heterologous hosts should be feasible.  相似文献   

19.
We report the cloning ofhermit, a member of thehAT family of transposable elements from the genome of the Australian sheep blowfly,Lucilia cuprina. Hermit is 2716 bp long and is 49% homologous to the autonomoushobo element,HFL1, at the nucleic acid level.Hermit has 15 bp terminal inverted repeats that share 10 bp with the terminal inverted repeats ofHFL1. Conceptual translation reveals a 583 residue open reading frame (ORF) that is 64% similar and 42% identical to theHFL1 ORF. However, the sequence of thehermit element contains two frameshifts within the putative ORF, indication thathermit is an inactive element. Analysis ofL. cuprina strains from within and outside Australia suggested thathermit is present as a single copy in all the genomes analysed.  相似文献   

20.
Belonging to Class II of transposable elements, En/Spm transposons are widespread in a variety of distantly related plant species. Here, we report on the sequence conservation of the transposase region from sequence analyses of En/Spm-like transposons from Poaceae species, namely Zingeria biebersteiniana, Zingeria trichopoda, Triticum monococcum, Triticum urartu, Hordeum spontaneum, and Aegilops speltoides. The transposase region of En/Spm-like transposons was cloned, sequenced, and compared with equivalent regions of Oryza and Arabidopsis from the gene bank database. Southern blot analysis indicated that the En/Spm transposon was present in low (Hordeum spontaneum, Triticum monococcum, Triticum urartu) through medium (Zingeria bieberstiana, Zingeria trichopoda) to relatively high (Aegilops speltoides) copy numbers in Poaceae species. A cytogenetic analysis of the chromosomal distribution of En/Spm transposons revealed the concurence of the chromosomal localization of the En/Spm clusters with mobile clusters of rDNA. An analysis of En/Spm-like transposase amino acid sequences was carried out to investigate sequence divergence between 5 genera — Triticum, Aegilops, Zingeria, Oryza and Arabidopsis. A distance matrix was generated; apparently, En/Spm-like transposase sequences shared the highest sequence homology intra-generically and, as expected, these sequences were significantly diverged from those of O. sativa and A. thaliana. A sequence comparison of En/Spm-like transposase coding regions defined that the intra-genomic complex of En/Spm-like transposons could be viewed as relatively independent, vertically transmitted, and permanently active systems inside higher plant genomes. The sequence data from this article was deposited in the EMBL/GenBank Data Libraries under the accession nos. AY707995-AY707996-AY707997-AY707998-AY707999-AY708000-AY708001-AY708002-AY708003-AY708004-AY708005-AY708005-AY265312.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号