首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
通过采用大孔吸附树脂对海红果黄酮粗提液的静态吸附和解吸试验,从10种大孔吸附树脂中筛选出海红果黄酮纯化的最优树脂,考察了该树脂对诲红果黄酮的静态、动态吸附与解吸性能并对吸附与洗脱的最佳条件进行了研究.结果表明:NKA-9树脂对海红果黄酮有很好的吸附和解吸性能,其最优的动态吸附工艺条件为:上样液pH值为4.0,浓度5.15 mg/mL,上样量为4 BV,流速控制在2 BV/h.最优的解吸工艺条件为:洗脱剂为80%乙醇溶液,洗脱液用量为3 BV,洗脱流速控制在1 BV/h.在此优化条件下,海红果黄酮的吸附率、解析率、收率、纯度的平均值分别达到为(79.39±0.13)%,(84.14±0.11)%,(68.20±0.15)%和(28.81 ±0.06)% (n=5).  相似文献   

2.
从金银花叶茎藤中提取总黄酮并用D-101大孔吸附树脂进行纯化,研究了D-101大孔吸附树脂对总黄酮的吸附及解吸附特性。结果表明,D-101树脂对金银花叶茎藤总黄酮分离纯化的最佳工艺参数为:上样液黄酮浓度0.538 mg/mL,静置吸附时间80 min,料液比1∶5(g∶mL),pH 2,流速为2 mL/min,以60 mL 75%的乙醇溶液洗脱,黄酮解吸率为94.5%,纯化后黄酮纯度为84.5%,是粗提液黄酮含量(16.8%)的5倍。金银花叶茎藤总黄酮在D-101树脂上的吸附等温线符合Langmuir等温吸附方程。吸附热力学参数表明吸附过程为自发、放热过程,吸附动力学可用Pseudo-second-order模型较好地拟合,30℃时其表观吸附速率常数为1.034×10-2g/mg.min。  相似文献   

3.
依据天冬氨酸和β-丙氨酸等电点的差异,采用静态吸附和动态吸附法,筛选适于分离β-丙氨酸的最佳树脂,并研究最佳树脂的吸附动力学和料液pH值、上样液流速,洗脱剂浓度等对β-丙氨酸分离的影响。结果表明:β-丙氨酸吸附的最佳树脂为HZ014,HZ014的静态吸附70 min达到动态平衡,吸附容量为72.92 g.kg-1,吸附率高于90%,最佳料液流速是2 ml.min-1,料液最佳pH为5.0,洗脱剂氨水浓度为4%。  相似文献   

4.
聚酰胺树脂精制青钱柳黄酮的研究   总被引:2,自引:0,他引:2  
研究青钱柳黄酮的最佳精制工艺.通过不同条件下聚酰胺树脂对青钱柳黄酮的静态和动态吸附与解吸特性的研究,确定聚酰胺树脂对青钱柳黄酮的最佳精制工艺;采用优选出的最佳精制工艺对青钱柳黄酮粗提物进行多次精制,得到高纯度青钱柳黄酮.聚酰胺树脂精制的最佳条件是:在室温和吸附液为碱性,吸附流速为2.0 mL/min时吸附能力最强;在室温和解吸流速为2.0 mL/min时,以40%乙醇洗脱效果最好;青钱柳黄酮粗提物经过聚酰胺树脂三次吸附和解吸后黄酮含量由粗品的11.40%提高到了81.34%,纯度提高了6.14倍.聚酰胺树脂对青钱柳黄酮纯化效果好,总黄酮含量高,产品安全.  相似文献   

5.
研究大孔吸附树脂纯化绿茄叶黄酮粗提取物的最佳工艺。通过比较10种大孔吸附树脂纯化黄酮粗提取物的吸附及解吸性能,筛选出纯化树脂XDA-1,并考察XDA-1树脂对黄酮粗提取物的静态、动态吸附与解吸的性能。结果表明,XDA-1树脂对黄酮粗提取物纯化的最佳工艺参数:吸附平衡时间8 h,吸附浓度2.00 mg/m L,p H值3.0,温度25℃,上样流速2 BV/h;解吸平衡时间2 h,解吸剂为p H值为3.0的体积分数80%的乙醇溶液,解吸流速3 BV/h,纯化倍数2.37。该研究证实大孔吸附树脂纯化绿茄叶黄酮的方法简单可行,为绿茄叶黄酮的分离纯化提供了实验依据。  相似文献   

6.
AB-8大孔吸附树脂对红花桑寄生总黄酮静态吸附和动态洗脱的效果,受提取液质量浓度、pH值及环境温度、振速以及洗脱剂乙醇浓度、流速等因素影响。试验表明,提取液质量浓度和pH值对AB-8树脂的吸附效果有显著影响,其吸附分离总黄酮的工艺条件为:浓度为1.2~2.0mg/ml、pH 3.0~4.0的红花桑寄生提取液,置于摇床上,于室温条件下振荡(振速160r/min)吸附2~3h,然后用5倍于树脂体积(5BV)的50%乙醇以1.5ml/min流速进行柱上动态解吸。AB-8树脂对红花桑寄生总黄酮的饱和吸附量可达29.0mg/g,动态洗脱率达95.0%,获得产品中黄酮纯度为46.0%,得率为5.5%。  相似文献   

7.
黑果枸杞色素的提取和精制工艺研究   总被引:10,自引:0,他引:10  
本文采用正交实验法对黑果枸杞色素的提取和精制工艺进行了研究。结果表明,黑果枸杞色素的最佳提取条件为:以pH 3.0的80%乙醇作浸提剂,提取温度50℃,提取时间3 h,固液配比1:40;用X-5大孔吸附树脂对色素进行精制,以树脂柱径高比1:15、流速3 mL/minp、H 3.0、色素液浓度1 g/L为最佳吸附条件,色素的吸附量可达0.03715 g/mL湿树脂体积;而以95%乙醇做洗脱液,在pH 2.0、流速5 mL/min、3倍于柱床体积的洗脱液条件下解吸附效果最佳,色素回收率达到97.78%;制取的色素产品外观呈紫红色,色价为36.7。  相似文献   

8.
本研究以赶黄草地上部分为材料,研究大孔树脂纯化赶黄草黄酮的工艺,并评价体外抗氧化活性。根据大孔树脂对赶黄草黄酮的吸附和解吸性能,从7种不同类型的大孔树脂中筛选出适宜的树脂,进一步优化其纯化工艺,并比较纯化前后黄酮的体外抗氧化活性。试验结果表明,DM130大孔树脂对赶黄草黄酮有较好的吸附和解吸效果,其最佳纯化工艺参数:上样液黄酮浓度为1.0 mg/mL、pH为5、上样速度为1.0 mL/min、上样量为110 mL、洗脱液为70%乙醇、洗脱速度为1.0 mL/min和洗脱体积为40 mL。该工艺条件下,黄酮的纯度由20.04%提高至43.93%,提高了23.89%,表明DM130树脂对赶黄草黄酮的纯化效果较好。另外,纯化后赶黄草黄酮的DPPH自由基清除能力和还原力均显著提高。  相似文献   

9.
天然茄子皮红色素分离纯化的动态吸附参数研究   总被引:2,自引:0,他引:2  
运用静态吸附与解吸试验对5种大孔吸附树脂进行了筛选,通过单因素试验、正交试验确定了大孔树脂吸附茄子皮红色素的最佳操作条件.结果表明,HPD-100树脂对茄子皮红色素的吸附和解吸性能较好;最佳吸附条件为A2B2C2,即料液浓度(以吸光度计)为0.435 Abs,上柱速率为3.0 BV/h,pH值为2.53.  相似文献   

10.
目的:研究大孔吸附树脂纯化鸡枞皂苷的方法.方法:采用分光光度法测定鸡枞皂甙的含量,分别考察了树脂种类、样品液浓度、pH值、吸附流速、洗脱剂浓度对鸡枞皂甙分离纯化的影响.结果:HPD-450树脂最适合鸡枞皂苷的纯化.工艺条件为:洗脱剂乙醇的体积分数为40%,吸附流速为1~2mL/min,样品液浓度为2.5~4.0mg/mL,样品液pH值为5~7.采用HPD-450大孔吸附树脂对鸡枞皂甙进行纯化效果最优.结论:在上述条件下,大孔树脂可用于鸡枞皂甙的分离纯化.  相似文献   

11.
AB-8大孔树脂纯化欧洲鳞毛蕨总黄酮的研究   总被引:1,自引:0,他引:1  
目的:对AB-8大孔吸附树脂对欧洲鳞毛蕨总黄酮的纯化工艺条件进行了系统的研究。方法:采用静态和动态的吸附-解吸实验,利用紫外可见分光光度计测量欧洲鳞毛蕨总黄酮的含量,研究不同的工艺条件对总黄酮纯化的影响。结果:AB-8大孔树脂对欧洲鳞毛蕨总黄酮的饱和吸附量是25.53mg/g,洗脱率达到98.3%,提取液的pH值对树脂的吸附能力有很大的影响,当pH值为4.08(原液pH值)时树脂吸附能力达到最大。采用0.5mg/mL流速上样,1.2BV 30%和1BV 50%乙醇1.0 mg/mL流速洗脱可较好的分离纯化欧洲鳞毛蕨总黄酮。结论:AB-8大孔树脂是欧洲鳞毛蕨总黄酮纯化的理想吸附剂。  相似文献   

12.
以桑椹中黄酮类物质的吸附量和解吸率为指标,对比分析HZ-801、HZ-816、HZ-818等12种大孔吸附树脂对桑椹提取液的分离纯化效果,优选出最佳树脂HZ-801并通过对上样液pH、上样液质量浓度、上样量、吸附流速、洗脱剂质量浓度、洗脱剂用量、洗脱流速等影响因素的考察,确定最优工艺:吸附阶段上样液pH=4,上样液质量浓度0.45mg/mL,上样量420mL,吸附流速120mL/h,动态吸附量(干树脂)25.34mg/g,吸附率84.25%;洗脱阶段的洗脱剂体积分数为60%乙醇,洗脱剂用量270mL,洗脱流速120mL/h。此优化工艺条件下的洗脱率为85.78%,总黄酮纯度从23.64%提高到82.36%。  相似文献   

13.
D140大孔吸附树脂银杏黄酮提取纯化性能研究   总被引:30,自引:0,他引:30  
对国内外部分大孔吸附树脂的银杏黄酮吸附性能进行了比较筛选实验。其中D140型大孔吸附树脂具有较佳的吸附能力,应用该树脂研究了银杏黄酮的树脂法提取纯化工艺,研究结果表明,银杏黄酮提取液的预处理,提取液的pH,提取液过柱流速,洗脱剂种类及用量,洗脱物后处理等因素均对银杏提取物的收率、纯度等产生影响,采用D140树脂提取银杏黄酮的平均收率为3.54%,纯度为24.54%。已用于工业化生产。  相似文献   

14.
采用聚酰胺吸附树脂对竹笋壳黄酮类化合物分离纯化,确定了聚酰胺吸附树脂对竹笋壳黄酮分离纯化的最佳工艺条件:制备5mg/mL的竹笋壳黄酮提取液90mL,调节pH=5,用1.8mL/min的流速上样后,用160mL的去离子水冲洗大量杂质,随后用120mL的60%乙醇溶液洗脱120mL。在此条件下,竹笋壳黄酮的纯度为58.4%,与大孔树脂纯化方法相比,该方法更具有良好的分离纯化效果。  相似文献   

15.
研究大孔吸附树脂吸附链霉菌702抗真菌活性物质的工艺条件。采用5种不同大孔吸附树脂吸附链霉菌702发酵液提取液中抗真菌活性物质,选择吸附效果较佳树脂进行吸附条件优化,以桔青霉为指示菌,纳他霉素为对照抗生素.采用“管碟法”测定抗真菌活性物质含量。结果发现,XAD18树脂吸附效果较好,获得优化吸附条件:上样液pH6,NaCl质量浓度10g/L,上样量22.63mg/g湿树脂,吸附流速2.5mL/min,水洗体积180mL,洗脱流速1.5mL/min,洗脱剂为体积分数10%、50%和90%的甲醇,洗脱方式为梯度洗脱。在确定的工艺条件下XAD18对链霉菌702抗真菌活性物质的吸附率可达90%,洗脱率可达75%,回收率可达80%。  相似文献   

16.
研究比较了5种树脂对肝素的吸附能力,从中选出S5428阴离子交换树脂来纯化肝素。通过对各因素的研究,确定了树脂对肝素的静态、动态吸附以及解吸的最佳条件。结果表明:静态吸附的温度45℃,pH 8.0的条件下吸附2 h,肝素的吸附率为90.5%;层析柱的动态吸附温度45℃,肝素溶液进样浓度1.0 mg/mL,进样速度1.5 mL/min,树脂柱能处理1.5 BV肝素液而不发生泄露,吸附量为3.05 mg/mL,达到饱和吸附时可处理4BV的料液,吸附量为9.18 mg/mL;采用2.0 mol/L NaCl洗脱,洗脱流速1.5 mL/min,肝素解吸率可达95.8%,肝素效价可达150 U/mg,效价回收率98%。  相似文献   

17.
HZ-841吸附树脂精制银杏叶总黄酮   总被引:4,自引:0,他引:4  
本文研究了用HZ-841吸附树脂精制银杏叶总黄酮的工艺。用10 BV 70%的乙醇分三次提取脱脂银杏叶粉中的银杏叶总黄酮,其收得率为4.8%,纯度为21.7%;用30BV纯净水、微波解冻提取30min,银杏叶总黄酮的收得率及纯度分别是2.63%和13.4%。HZ-841树脂对银杏叶总黄酮的动态吸附容量在pH=7.0时为0.265g/mL,树脂,动态吸附平衡时间为10min。酸度对HZ-841树脂吸附银杏叶总黄酮有显著影响,当pH=5.0时,其静态吸附量可达到0.322g/mL。吸附了银杏叶总黄酮的HZ-841树脂可用乙醇洗脱,当洗脱液pH=9.0、乙醇浓度为90%、洗脱流速3BV/h时,5BV洗脱液的收得率为1.8%。用无水乙醇洗脱的银杏叶总黄酮经过真空浓缩、干燥,获得的浅黄色粉末中银杏叶总黄酮含量为37.3%,产品收得率为2.41%。  相似文献   

18.
采用离子交换法,利用弱碱性阴离子交换树脂D315吸附小麦粉初提液中的α-淀粉酶抑制剂,对其静态吸附以及洗杂洗脱条件进行研究。通过对静态吸附条件的摸索,得出静态下的最佳工艺条件:上样料液的蛋白质量浓度ρ0=2.5~3.5 mg/mL、pH=8.5~9.5、温度t=30℃、转速150 r/min。最佳洗脱条件:0.1 mol/L NaCl洗杂,0.5mol/L NaCl洗脱。在该条件下,α-淀粉酶抑制剂纯化倍数为4.25倍,收率为64.58%。  相似文献   

19.
选择6种吸附树脂和离子交换树脂对D-泛解酸内酯水解酶进行固定化,筛选出了固定化效果较好的大孔弱碱性丙烯酸系阴离子交换树脂D-380为载体,用先吸附后交联的方法固定化。通过实验对固定化条件进行了优化,得出最佳的固定化条件为:加酶量6U/g树脂、吸附pH7.5、吸附时间4h、吸附温度30℃、交联剂戊二醛终浓度0.1%、交联时间2h。实验表明在此条件下制得的固定化酶有很好的稳定性:固定化酶在连续20次的底物水解反应后,剩余酶活达到71%。当温度达到80℃时游离酶几乎失去酶活,而固定化酶剩余酶活为60%以上。游离酶的pH稳定性范围为pH7~8,而固定化酶为pH6.5~8.5。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号