首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

2.
采用水培法,采用不同浓度镉(Cd)和铅(Pb)的4种处理对6种常见湿生植物:豆瓣菜(Nasturtium of?ficinale R. Br.)、水萝卜(Raphanus sativus L.)、沼生蔊菜(Rorippa islandica(Oed.)Borb.)、白芥(Sinapis alba L.)、水芹(Oenanthe javanica(Blume)DC.)和蕹菜(Ipomoea aquatica Forsk.)幼苗的生长、重金属积累与转运、抗氧化酶活性及根细胞死亡的影响进行研究。结果显示,在Cd、Pb单一及复合胁迫下,豆瓣菜、水芹的根长、根重、植株干重均显著低于对照;而经单一Pb处理的水萝卜、白芥的根长、植株干重高于对照。单一Cd处理组中,6种植物富集系数大小依次为:豆瓣菜沼生蔊菜水芹水萝卜蕹菜白芥。Pb单一胁迫后,豆瓣菜对Pb的富集系数最小,仅为0013。水萝卜幼苗在Cd和Pb复合胁迫下生长状况与对照相比无显著差异,且Cd、Pb转运系数增大,抗氧化酶活性较高,根细胞死亡较少,表明该物种是具有较好修复潜力的植物。  相似文献   

3.
盐胁迫对盐生植物黄花补血草种子萌发和幼苗生长的影响   总被引:2,自引:0,他引:2  
尤佳  王文瑞  卢金  贾鹏翔  缪建顺  杨颖丽 《生态学报》2012,32(12):3825-3833
盐生植物黄花补血草广泛分布于我国西北地区、东北西部以及华北北部,对改良盐碱土壤具有重要的生态作用。以黄花补血草(Limonium aureum(L.)Hill)为材料,研究分析了不同浓度NaCl胁迫对其种子萌发和幼苗生长产生的抑制效应及作用机制。结果表明:低浓度NaCl(25 mmol/L和50 mmol/L)处理不影响黄花补血草种子萌发和幼苗生长,25 mmol/L NaCl甚至促进了根生长,而高浓度NaCl(100 mmol/L和150 mmol/L)处理明显抑制种子萌发及幼苗生长。利用荧光探针的检测结果表明,NaCl处理的幼苗根中过氧化氢(H2O2)和一氧化氮(NO)含量明显高于对照水平。碘化丙啶(PI)染色结合激光共聚焦显微镜观察及检测相对电导率结果显示,高浓度NaCl处理抑制了幼苗根尖伸长区细胞的伸长生长,增加了细胞膜的通透性,对根细胞造成了明显的伤害。此外,高浓度NaCl处理诱导叶片丙二醛(MDA)含量显著升高。以上结果说明,黄花补血草对低浓度的盐具有一定的耐盐性,但高浓度盐降低了种子的萌发率,使幼苗根中H2O2产生增加,抑制根尖伸长区细胞的伸长生长,对根、叶造成明显氧化损伤,从而抑制黄花补血草幼苗的生长。  相似文献   

4.
实验群落十四种草本植物的生长和竞争研究   总被引:3,自引:0,他引:3  
陈章和 《Acta Botanica Sinica》2001,43(11):1184-1190
研究了高肥力和低肥力、割草和不割草、微生物接种和不接种处理对实验群落中14种常见草本植物的生长和竞争的影响。高肥力不割草的群落,不同种间的生物量差别最大,竞争最激烈;割草和低肥力减弱竞争的生长而导致种间生物量差异减小。多次的割草减少群落的总生物量;微生物接种明显增加2种豆科植物百脉根(Lotus corniculatus L.)和红车轴草(Trifolium pratense L.)的生长,也有利于非豆科植物大看麦娘(Alopecurus pratensis L.)的生长,而鸭芽茅(Dactylis glomerata L.)在无微生物接种的群落生物量较多,微生物接种对其他植物的生长无显的影响。在低肥力群落,接种微生物的促进作用更加显。  相似文献   

5.
我组在寻找农用抗菌素过程中,1972年分离到一株能抑制多种植物病原真菌的链霉菌,编号为5102,定名为吸水链霉菌应城变种(Streptomyces hygroscopicus var.yingchengensis Yan et Ruan n.var.)。几年来,通过室内和小区试验证明,链霉菌5102所产生的抗菌素(农抗5102)对防治水稻纹枯病、水稻小球菌核病、小麦赤霉病、玉米小斑病、棉花立枯病和炭疽病等  相似文献   

6.
微生物与植物之间存在错综复杂的双向交流和串扰,植物与病原微生物互作直接影响寄主植物的生存状况,而植物和益生微生物互作则有利于宿主的生长和健康,共生微生物也会从中受益。不管是病原微生物还是有益微生物进入植物体内,植物miRNA都会迅速做出响应,同时微生物也可以产生miRNA样RNA(miRNA-likeRNA,milRNA)影响植物健康,可见miRNA(或milRNA)是植物与微生物互作过程中迅速响应的重要媒介分子,其内在机制研究近年来取得了许多进展。文中概述了植物-病原微生物、植物-益生微生物互作中miRNA的调控作用,重点阐述了植物miRNA在植物-病原微生物互作过程中对寄主植物抗病性的调控作用和植物-益生微生物互作过程中对宿主植物生长发育及代谢的调控,以及真菌milRNA对寄主植物的跨界调控作用。  相似文献   

7.
天门冬属植物化学成分及生物活性研究进展   总被引:5,自引:0,他引:5  
本文对天门冬属(Asaragus L.)植物化学成分及生物活住的研究进展作一概述.  相似文献   

8.
采用单一碳源回收菌群的方法与ERIC-PCR方法相结合,检测水稻(Oryza sativa L.)根际施用转基因微生物E4(Enterobacteria cloacae E4)后,其根际微生物的群落结构和多样性的变化,进而推测转基因微生物E4在田间施用的安全性。结果表明:转基因微生物E4施用到水稻根际后,水稻根际的代谢指纹图谱和。DNA指纹图谱都发生了改变,采用Sollthelxi blotting检测显示:E4成为根际的优势菌,这对植物生长有利,应该不会造成不利的影响。  相似文献   

9.
植物招募防御微生物与植物保护   总被引:2,自引:0,他引:2  
植物根部微生物被称为植物的第二基因组,在植物保护中起到重要的作用.植物整合环境和生物互作信号,调控代谢物的合成与分泌,从而影响根部微生物群落结构.当病原微生物或昆虫侵袭植物时,植物能招募有益微生物协助植物防御.本文对病虫害侵袭植物,根对有益微生物的招募机制及招募微生物参与植物防御的机制进行了综述,并展望了未来的研究方向和热点.  相似文献   

10.
三种番荔枝科植物成分的生物活性研究   总被引:7,自引:1,他引:6  
从番荔枝科植物陵水暗罗 ( Polyalthia nemoralis A.et DC.)的根中分离出暗罗素 ( zincpolyanemine)为植物中首次分得含巯基氧化吡啶的锌化合物。实验证明 :具有抗疟、抗霉菌等作用 ,但毒性较大 ,剂量减少则毒性亦减少。此外 ,从该科植物假鹰爪( Desmos chinensis L our.)的根中分离出 3个双氢黄酮及毛叶假鹰爪 ( Desmos dumosus( Roxb.) Saff.)的叶中分离出 4个黄酮类化合物 ,其中 7-甲氧基黄芩素 ( negletein)有显著的强心作用。本文对成分、活性及开发新药进行了讨论。  相似文献   

11.
Actinomycete complexes were studied in the rhizosphere of three crop species using luminescence microscopy and plating. The concentration of the total prokaryotic biomass and the length of actinomycete mycelium proved higher in the rhizosphere than in root-free soil. Actinomycetes in the rhizosphere of oats (Avena sativa L.), winter rye (Secale cereale L.), and red clover (Trifolium pratense L.) were represented by the genera Streptomyces and Micromonospora and oligosporous species. The length and biomass of actinomycete mycelium proved to decrease while the generic diversity increased in the following sequence: winter rye—oats—red clover. Increasing soil suppression and plant resistance to phytopathogens using mycelial prokaryotes is discussed in the context of environmental safety.  相似文献   

12.
A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.  相似文献   

13.
The research is focused on an ecologically sound and highly productive cultivation system for fodder and/or biomass for thermal power generation on the basis of winter legumes and maize as subsequent summer crop, managed without additional nitrogen fertiliser. Therefore the yield of biomass and N-fixing capacity of a winter pea (Pisum sativum L.) and crimson clover (Trifolium incarnatum L.) monocropped and intercropped with rye (Secale cereale L.) were examined for five years in a field trial. In mid-June above-ground biomass of winter crops was removed and maize transplanted. The winter crops achieved maximum dry matter yield about three to five weeks before maturity. Mixed stands yielded more biomass than pure stands and exhibited greater yield stability. The relative advantage of intercropping, expressed as land equivalent ratio (LER), determined for intercropped winter pea/rye were 1.1 to 1.2 and for crimson clover/rye 1.3. At maturity, the amount of fixed nitrogen ranged between 178 kg N for crimson clover and 242 kg N ha-1 for winter pea, respectively. At the end of anthesis (middle of June, harvesting stage for silage fodder) 75% and 88% of the total fixed nitrogen was achieved, for clover and pea, respectively. In intercropping the amount of fixed nitrogen was lower than in pure stands due to a lower seed density of the legume; however, the N-fixing efficiency was greater than in pure stands. N-release of the winter pea in a pure stand produced a maximum yield in maize (Zea mays L.) without additional N-fertiliser. An additional N mineral fertilisation of 75 to 150 kg N and 75 to 225 kg N was necessary to achieve maximum yields in maize following intercropped winter pea and crimson clover, respectively. Legumes in mixed stands with rye resulted in lower amounts of residual nitrogen after maize harvest. The beneficial effect of legumes on maize can be divided into N-effects and rotation effects. Both effects were positive regarding winter pea. The rotation effect of crimson clover in pure stands on maize was negative. Allelopathic effects and the high sensitivity of crimson clover to mineral nitrogen in the soil, released by residues of the preceding crop, winter rape (Brassica rapa L.), were discussed as the reason for this observation. The combination of the winter pea in pure stand and maize achieved the highest total biomass yield from winter and summer crops, unfertilised (156 dt ha-1 dry). The combinations of intercropped legumes and maize produced biomass yields of 142 to 145 dt ha-1. Because winter pea is highly susceptible to lodging, intercropping with low seed density of rye is recommended (3/4 winter pea, 1/4 rye). The rye crop prevents lodging by providing support and high rates of N-fixation are achieved with high seed density of pea. Intercropping with crimson clover and rye should be based on high seed densities of legumes, too because rye is highly competitive within those mixtures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
三叶草体内磷通过菌丝桥向黑麦草的传递研究   总被引:14,自引:3,他引:11  
应用5室分隔法研究了供体三叶草体内的32P通过菌丝桥向受体黑麦草的传递作用。结果表明,菌根侵染供体三叶草根系之后,根外菌丝可穿过中室到达受体植株根室而再度侵染受体黑麦草的根系,从而形成三叶草-黑麦草根系之间的菌丝桥;供体三叶草体内的32P可通过根间菌丝桥传递给受体黑麦草,32P的传递量随受体植株施磷水平的提高而降低.  相似文献   

15.
The aim of this study was to determine if endophytic bacteria could contribute to cultivar specific interactions between red clover (Trifolium pratense L.) and potatoes (Solanum tuberosum L.) in crop rotations. Endophytic bacteria were isolated from the roots of four red clover cultivars (AC Charlie, Altaswede, Marino and Tempus) grown in the field. Populations of bacteria from each cultivar were similar. The most abundant genus was Rhizobium, but species of Curtobacterium, Pseudomonas, and Xanthomonas were common to all cultivars. Plantlets of two potato cultivars, Russet Burbank and Shepody, were inoculated individually with the seven bacterial isolates most frequently recovered from each red clover cultivar, and grown in Magenta vessels for 6 wk. Significant differences were found for plant height, and wet weights of roots, shoots and their total. Potato cultivars differed for root wet weight only, while red clover cultivar, as a source of bacteria, had a significant effect on all traits except plant height. Differences among bacteria were significant for all traits except shoot wet weight. There was a significant interaction of potato cultivar by red clover cultivar. The potato cultivar Russet Burbank did best with bacteria from the red clover cultivar, Marino; and Shepody, with bacteria from Altaswede.  相似文献   

16.
The survival of environmental isolates of actinomycetes introduced with the seeds of agricultural plants in the root-free soil and in the rhizosphere and rhizoplane was studied. Different strategies of colonization of the rhizosphere were revealed for the representatives of the genera Streptomyces, Micromonospora, and Streptosporangium, the organisms typical for the moderate climate rhizosphere. The plants of winter rye (Secale cereale L.) inoculated with actinomycetes were shown to have growth advantages, while the cow clover plants (Trifolium pratense L.) had no growth advantages compared to uninoculated plants. The role of the plant component in the interaction with mycelial prokaryotes is discussed.  相似文献   

17.
Forage radish (Raphanus sativus L. var. longipinnatus) is being used by increasing numbers of farmers as a winter cover crop in the Mid-Atlantic USA. It is a non-host to arbuscular mycorrhizal fungi (AMF) and releases anti-fungal isothiocyanates (ITCs) upon decomposition in the winter. Field experiments were conducted to determine the effect of forage radish and cereal rye (Secale cereale L.) cover crops on arbuscular mycorrhizal fungus colonization of and P acquisition by a subsequent maize (Zea mays L.) silage crop. Cover crop treatments included forage radish, rye, a mix of forage radish and rye, and no cover crop. Mycorrhizal fungus colonization of maize roots at the V4 stage following forage radish cover crops was not significantly different from that in the no cover crop treatment. In 3 out of 6 site-years, a rye cover crop increased AMF colonization of V4 stage maize roots compared to no cover crop. These findings suggest that forage radish cover crops do not have a negative effect on AMF colonization of subsequent crops.  相似文献   

18.
Colonization of plant rhizosphere by actinomycetes of different genera   总被引:1,自引:0,他引:1  
The survival of environmental isolates of actinomycetes introduced with the seeds of agricultural plants in root-free soil and in the rhizosphere and rhizoplane was studied. Different strategies of colonization of the rhizosphere were revealed for the representatives of the genera Streptomyces, Micromonospora, and Streptosporangium, organisms typical for the moderate climate rhizosphere. The plants of winter rye (Secale cereale L.) inoculated with actinomycetes were shown to have growth advantages, while the cow clover plants (Trifolium pratense L.) had no growth advantages compared to uninoculated plants. The role of the plant component in the interaction with mycelial prokaryotes is discussed.  相似文献   

19.
Anaerobic conditions developing under ice cover affect winter survival and spring regrowth of economically important perennial crops. Our objective was to assess interspecific differences in the resistance to anaerobic conditions at low temperature, and to relate those differences to plant metabolism. Four perennial forage species, alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), timothy (Phleum pratense L.) and orchardgrass (Dactylis glomerata L.), were subjected to a progressively developing anoxic stress by enclosing potted plants in gas‐tight bags in late autumn and exposing them to simulated winter conditions in an unheated greenhouse. Near‐anaerobic conditions were reached after 60 d of enclosure for orchardgrass, alfalfa and red clover, and after 80 d for timothy. The sensitivity of the species to anaerobic conditions, based on plant regrowth, was: red clover and orchardgrass > alfalfa > timothy. The concentration of ethanol increased in response to oxygen deprivation, and reached the highest value in the sensitive red clover, whereas its concentration was the lowest in timothy. The expression of the alcohol dehydrogenase (ADH) gene was markedly lower in timothy than in the other three species for which the expression was equivalent. We conclude that the greater resistance of timothy to anaerobic conditions at low temperature is associated with a slower glycolytic metabolism.  相似文献   

20.
Summary The allelopathic effect of alfalfa (Medicago media Pers.) and red clover (Trifolium pratense L.) root saponins on winter wheat seedling growth and the fate of these chemicals in soil environments were studied. Seed germination, seedling and test fungus growth were suppressed by water and by alcohol extracts of alfalfa roots, and by crude saponins of alfalfa roots, indicating that medicagenic acid glycosides are the inhibitor. Powdered alfalfa roots inhibited wheat seedling growth when added to sand. At concentrations as low as 0.25% (w/w) the root system was completely destroyed whereas seedling shoots suffered little damage. Red clover roots caused some wheat growth inhibition when incorporated to sand, but their effect was much lower than in the alfalfa root treatment. Soil textures had a significant influence on the inhibitory effect of alfalfa roots. The inhibition of seedling growth was more pronounced on light than on heavy soils. This was attribted to the higher sorption of inhibitors by heavy soils. Incubation of alfalfa roots mixed into loose sand, coarse sand, loamy sand and clay loam for a period of 0–8 days resulted in decreased toxicity to bothT. viride and wheat seedlings. This decrease occurred more quickly in heavier soils than in loose sand, due to the hydrolysis of glycosides by soil microorganisms. Soil microbes were capable of detoxifying medicagenic acid glycosides by partial hydrolysis of sugar chain to aglycone. These findings illustrate the importance of medicagenic acid glycosides as an inhibitor of wheat seedling growth, and of their fate in different soil environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号