首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 579 毫秒
1.
The aim of the present study was to evaluate the changes caused by adjuvant-induced arthritis in liver mitochondria and to investigate the effects of the nonsteroidal anti-inflammatory drug nimesulide. The main alterations observed in liver mitochondria from arthritic rats were: higher rates of state IV and state III respiration with beta-hydroxybutyrate as substrate; reduced respiratory control ratio and impaired capacity for swelling dependent on beta-hydroxybutyrate oxidation. No alterations were found in the activities of NADH oxidase and ATPase. Nimesulide produced: (1) stimulation of state IV respiration; (2) decrease in the ADP/O ratio and in the respiratory control ratio; (3) stimulation of ATPase activity of intact mitochondria; (4) inhibition of swelling driven by the oxidation of beta-hydroxybutyrate; (5) induction of passive swelling due to NH(3)/NH(4)+ redistribution. The activity of NADH oxidase was insensitive to nimesulide. Mitochondria from arthritic rats showed higher sensitivity to nimesulide regarding respiratory activity. The results of this work allow us to conclude that adjuvant-induced arthritis leads to quantitative changes in some mitochondrial functions and in the sensitivity to nimesulide. Direct evidence that nimesulide acts as an uncoupler was also presented. Since nimesulide was active in liver mitochondria at therapeutic levels, the impairment of energy metabolism could lead to disturbances in the liver responses to inflammation, a fact that should be considered in therapeutic intervention.  相似文献   

2.
Rats treated with hydroxycobalamin[c-lactam] (HCCL), a cobalamin analogue that induces methylmalonic aciduria, have increased hepatic mitochondrial content and increased oxidative metabolism of pyruvate and palmitate per hepatocyte. The present studies were undertaken to characterize oxidative metabolism in isolated liver mitochondria from rats treated with HCCL. After 5-6 weeks, state 3 oxidation rates for diverse substrates are reduced in mitochondria from HCCL-treated rats. Similar reductions of mitochondrial oxidation rates are obtained with dinitrophenol-uncoupled mitochondria excluding defective phosphorylation as a cause for the observed decrease in mitochondrial oxidation. The activities of mitochondrial oxidases are reduced in HCCL-treated rats and demonstrate a defect in complex IV. Investigation of the complexes of the respiratory chain reveals a 32% decrease of ubiquinol:ferricytochrome c oxidoreductase (complex III) activity and a 72% decrease of ferrocytochrome c:oxygen oxidoreductase (complex IV) activity in mitochondria from 5-6-week HCCL-treated rats as compared with controls. Liver mitochondria from HCCL-treated rats also demonstrate decreased cytochrome content per mg of mitochondrial protein (25% decrease of cytochrome b and 52% decrease of cytochrome a + a3 as compared with control rats). The HCCL-treated rat represents an animal model for the study of the consequences of respiratory chain defects in liver mitochondria.  相似文献   

3.
Injections of albino rats with antioxidants of the ionol group cause cyclic changes in the energy state of liver mitochondria which are correlated with changes in the fatty acid composition of mitochondrial membranes. The increase in the degree of coupling between oxidation and phosphorylation coincides in time with the increment in the content of saturated fatty acids and a decrease in the unsaturated fatty acid content in the total fraction of mitochondrial membrane lipids. Conversely, the activation of the external pathway of NADH oxidation and a decrease of the respiratory control are correlated with the diminution of the saturated fatty acid content and an increased percentage of unsaturated fatty acids. These changes are especially well pronounced in the case of fatty acids carrying 18 carbon atoms.  相似文献   

4.
Nonalcoholic fatty liver disease (NAFLD) has become common liver disease in Western countries. There is accumulating evidence that mitochondria play a key role in NAFLD. Nevertheless, the mitochondrial consequences of steatohepatitis are still unknown. The bioenergetic changes induced in a methionine- and choline-deficient diet (MCDD) model of steatohepatitis were studied in rats. Liver mitochondria from MCDD rats exhibited a higher rate of oxidative phosphorylation with various substrates, a rise in cytochrome oxidase (COX) activity, and an increased content in cytochrome aa3. This higher oxidative activity was associated with a low efficiency of the oxidative phosphorylation (ATP/O, i.e., number of ATP synthesized/natom O consumed). Addition of a low concentration of cyanide, a specific COX inhibitor, restored the efficiency of mitochondria from MCDD rats back to the control level. Furthermore, the relation between respiratory rate and protonmotive force (in the nonphosphorylating state) was shifted to the left in mitochondria from MCDD rats, with or without cyanide. These results indicated that, in MCDD rats, mitochondrial ATP synthesis efficiency was decreased in relation to both proton pump slipping at the COX level and increased proton leak although the relative contribution of each phenomenon could not be discriminated. MCDD mitochondria also showed a low reactive oxygen species production and a high lipid oxidation potential. We conclude that, in MCDD-fed rats, liver mitochondria exhibit an energy wastage that may contribute to limit steatosis and oxidative stress in this model of steatohepatitis.  相似文献   

5.
Mitochondrial membrane fatty acid composition has been proposed to play a role in determining mitochondrial proton leak rate. The purpose of this study was to determine if feeding rats diets with different fatty acid sources produces changes in liver proton leak and H(2)O(2) production. Six-month-old male FBNF(1) rats were fed diets with a primary fat source of either corn or fish oil for a 6-month period. As expected, diet manipulations produced substantial differences in mitochondrial fatty acid composition. These changes were most striking for 20:4n6 and 22:6n3. However, proton leak and phosphorylation kinetics as well as lipid and protein oxidative damage were not different (P > 0.10) between fish and corn oil groups. Metabolic control analysis, however, did show that control of both substrate oxidation and phosphorylation was shifted away from substrate oxidation reactions to increased control by phosphorylation reactions in fish versus corn oil groups. Increased mitochondrial H(2)O(2) production was observed in corn versus fish oil-fed rats when mitochondria were respiring on succinate alone or on either succinate or pyruvate/malate in the presence of antimycin A. These results show that mitochondrial H(2)O(2) production and the regulation of oxidative phosphorylation are altered in liver mitochondria from rats consuming diets with either fish or corn oil as the primary lipid source.  相似文献   

6.
It has been shown that KM values for ADP when rat liver mitochondria oxidized succinate were strictly dependent on the values of the respiratory control ratios. The Ki values for palmitoyl-CoA inhibition of the ADP-stimulated succinate oxidation and the inhibition of the uncoupler-stimulated ATPase activity were equal to 0.5 muM. Mitochondria from livers of starved rats showed 30% inhibition of the state 3 respiratory rate (compared to the uncoupled respiratory rate) which was abolished by addition of carnitine. It was supposed that this inhibition was due to the influence of acyl-CoAs bound to the inner mitochondrial membrane on the adeninenucleotide translocase. Mitochondria from livers of fed rats showed a strong inhibition of succinate oxidation both in state 4 and state 3, although the rate of uncoupled respiration was normal. It was assumed that in this case the changes in mitochondrial behaviour was caused by the decrease in the concentration of ADP and ATP in the matrix space of mitochondria.  相似文献   

7.
The respiratory control and rate of oxidation of exogenous NADH in vitro by liver mitochondria from vitamin E deficient rats were studied as a means of providing information concerning possible mitochondrial membrane alterations due to the deficiency.When mitochondria were aged at different temperatures for various periods of time, half-maximal inhibition of respiratory control occurred at lower temperatures and shorter aging periods in deficient mitochondria than in normal ones. Also, respiratory control was lost more rapidly in deficient mitochondria than in normal ones in the presence of either digitonin or low (hypotonic) concentrations of mannitol.Microsomes, both freshly prepared and boiled, dramatically lowered respiratory control and the effect was greater in the deficient mitochondria. Bovine serum albumin overcame the suppressed respiratory control, and exogenously added fatty acids mimiced the action of the microsomes.NADH oxidation by normal mitochondria proceeded slowly in isotonic media, while mitochondria of vitamin E deficient rats oxidized NADH much more rapidly. When mitochondria were subjected to ultrasonic disruption or incubated in hypotonic media, the rates of NADH oxidation by both types of mitochondria were similar.Respiratory decline associated with oxidation of β-hydroxybutyrate by the deficient mitochondria was decreased by including in the medium either a high concentration of NAD+, 0.5 mm oxalacetate, or 2 mm aspartate plus 1 mm α-ketoglutarate. This observation, plus the finding of similar activities of malate dehydrogenase and glutamic-oxalacetic transminase in normal and deficient livers, suggests that the action of each was due to an elevation of the mitochondrial NAD+/NADH ratio via a malate shuttle and cytoplasmic and mitochondrial glutamic-oxalacetate transaminase. It is postulated that the marked mitochondrial respiratory decline in the deficient rats is attributed to a limiting availability of NAD+ and a low ratio of NAD+ to NADH.  相似文献   

8.
The aim of the present work was to investigate the mechanisms of oxidative damage of rat liver mitochondria in vitro, under hypochlorous acid (HOCl)-induced oxidative stress, and in vivo, under acute carbon tetrachloride-induced intoxication in rats. Hypochlorous acid (50–300 μM), the main inflammatory agent, inhibited liver mitochondria respiratory activity and caused uncoupling in the respiratory and phos-porylation processes. The toxic damage of rat liver after 24 h of acute carbon tetrachloride-induced intoxication (4 g/kg, intragastrically) was accompanied by a significant reduction in succinate- and glutamate-dependent respiration rate in state 3 (by 65%, p < 0.001, and by 50%, p < 0.01, respectively). The respiration control ratio approached 1, reflecting the loss of respiration control. The phosphorylation coefficient significantly decreased due to uncoupling of the oxidation and phosphorylation processes. The mitochondrial alterations were associated with oxidation of intramitochondrial GSH by 25% (p < 0.05), the marked inhibition of succinate dehydrogenase (complex II) by 35% (p < 0.05), and the rise of blood plasma nitric oxide level by 45% (p < 0.05). The impairment of mitochondrial respiratory function may result from the inhibition of enzymatic activities in the respiratory chain and the damage of mitochondrial membrane during intoxication and plays a key role in the development of the CCl4-induced hepatotoxicity. Melatonin administration under CCl4-induced intoxication (three times at a dose of 10 mg/kg) increased the rate of succinate oxidation in state 3 by 30% (p < 0.05) and reversed the increase in glutathione peroxidase activity. Melatonin prevented an elevation of nitric oxide level in the blood plasma of intoxicated animals but did not protect mitochondrial functions under acute intoxication.  相似文献   

9.
The objective of this study is to elucidate the role of mitochondria in reversible metabolic depression of hepatocytes of the Baltic lamprey (Lampetra fluviatilis) taking place in the last year of its life cycle and to compare their main bioenergetic parameters with those of the frog (Rana temporaria) and the white outbred mouse (Mus musculus). Using isolated mitochondria as a model, we have revealed significant seasonal variations in the main bioenergetic parameters of the lamprey liver. These changes indicate that the metabolic depression is mediated by prolonged reversible alterations of mitochondrial functions, which manifest in low activity of the mitochondrial respiratory chain, low oxidative phosphorylation, low content of mitochondrial adenine nucleotides, high level of reduced mitochondrial pyridine nucleotides and leaky mitochondrial membranes observed in winter. The enhanced ion membrane permeability of winter lamprey liver mitochondria is found to be sensitive to EGTA and to cyclosporine A in combination with ADP and Mg2+ and is likely mediated opening the mitochondrial permeability transition pore in its low conductance state. The sharp activation of oxidation and phosphorylation in the lamprey liver mitochondria followed by spawning and death of the animal is observed in spring. The possible causes of the phenomenon and the differences obtained between lamprey, frog and mouse are under discussion.  相似文献   

10.
Liver mitochondria isolated in 0.44 M sucrose from rats deficient in essential fatty acids (EFA) oxidized citrate, succinate, α-ketoglutarate, glutamate, and pyruvate at a faster rate than did mitochondria isolated from normal rats; however, the oxidation of malate, caprylate, and β-hydroxybutyrate was not significantly increased. The mitochondria from deficient rats exhibited an increased ATPase activity and extensive structural damage as revealed by electron microscope examination of thin sections. An increase in citrate oxidation and ATPase activity, together with some structural damage, could be demonstrated as early as the 4th week in rats on a fat-free diet. Saturated fat in the diet did not prevent the change in mitochondrial structure but accelerated its appearance. Both the biochemical and structural defects could be reversed within three weeks after feeding deficient rats a source of EFA. In the presence of a phosphate acceptor the effect of EFA deficiency on substrate oxidation was largely eliminated. A trend toward a reduced efficiency of oxidative phosphorylation was noted in mitochondria from EFA-deficient rats, but significant uncoupling was found only in the case of citrate, β-hydroxybutyrate, and glutamate in the presence of malonate. Together with the increased ATPase activity, the uncoupling of phosphorylation could account for the poor respiratory control found with the deficient preparation. However, EFA deficiency was without effect on the respiration of liver slices, which supports the belief that the observed changes in oxidation and phosphorylation are an artifact resulting from damage sustained by the deficient mitochondria during their isolation.  相似文献   

11.
The effect of chronic carbon tetrachloride (CCl4) administration on liver mitochondria function and the protective action of adenosine on CCl4-induced damage were assessed in rats made cirrhotic by long-term exposure to the hepatotoxin (8 weeks). The CCl4 treatment decreased the ADP-stimulated oxygen consumption, respiratory control, and ADP/O values, mainly for substrates oxidation of site I, in isolated mitochondria. This impaired mitochondrial capacity for substrate oxidation and ATP synthesis was accompanied by an important diminution (approximately 30 mV) of membrane electrical potential. Disturbances of the mitochondrial membrane, induced by CCl4 treatment, were also evidenced as increased mitochondria swelling and altered oscillatory states of mitochondrial volume, both energy-linked processes. The deleterious effects of CCl4 on mitochondrial function were also reflected as a deficient activity of the malate-aspartate shuttle that correlated with abnormal distribution of cholesterol and phospholipids in membranes obtained from submitochondrial particles. Adenosine treatment of CCl4-poisoned rats partially prevented the alterations in mitochondria membrane composition and prevented, almost completely, the impairment of mitochondria function induced by CCl4. Although the nature of the protective action of adenosine on CCl4-induced mitochondria injury remains to be elucidated, such action at this level might play an important role in the partial prevention of liver damage induced by the CCl4.  相似文献   

12.
We investigated the role of the ATP-sensitive potassium channel opener pinacidil and blocker glibenclamide on guinea pig liver mitochondrial function, and a possible significance of pinacidil in the pharmacological treatment during myocardium dystrophy. First, a series of experiments was performed to determine the effect of pinacidil and glibenclamide on mitochondrial oxygen consumption. We found that pinacidil increased the rate of mitochondrial respiration for FAD-generated substrate (succinate oxidation), but was most effective for α-ketoglutarate oxidation with enhancement of respiratory control ratio. Oxidation of FAD-generated substrate inhibited efficiency of phosphorylation for α-ketoglutarate oxidation in pinacidil-treated animals. Glibenclamide decreased the rate of respiration with the lowest value of efficiency of phosphorylation, especially for α-ketoglutarate oxidation. A second series of experiments was performed to determine the effects of pinacidil and glibenclamide on oxidative phosphorylation during adrenaline-induced myocardium dystrophy. The increase in respiratory control ratio and efficiency of phosphorylation for α-ketoglutarate oxidation was greater than for succinate oxidation in mitochondria of pinacidil-pretreated animals during myocardium dystrophy. Inhibitory analysis with malonate suggested that endogenous succinate increased oxidation of NADH-generated substrates in mitochondria. Pinacidil is mainly involved in the adrenaline-induced alterations of mitochondrial function due to elevation of phosphorylation efficiency for α-ketoglutarate oxidation and a decreased level of lipid peroxidation.  相似文献   

13.
The effects of various rats of freezing-thawing reactions on the functional state and ionic permeability of rat liver mitochondria were studied. The degree of mitochondrial damage during the freezing -- thawing process depended on the rate of thawing rather than on that of freezing. The mitochondria which were slowly or rapidly frozen down to --196 degrees and subsequently slowly thawed revealed a higher membrane permeability for K+ Na+ and H+ and a more than 2-fold increase of the ATPase activity and the maximal rate of NADH oxidation via the antimycin-insensitive pathway in the presence of cytochrome c. This was concomitant with a complete inhibition of the ATP-synthetase activity and a marked inhibition of the respiratory chain function due to the efflux of cytochrome c from the inner mitochondrial membrane. After freezing and rapid thawing the functional activity of mitochondria changed insignificantly. A comparison of different cryoeffects demonstrated that the minimal damaging effects were exerted by rapid freezing -- rapid thawing, when the mitochondria partly restored their ability for oxidative phosphorylation.  相似文献   

14.
Mitochondrial dysfunctions have been detected in non-alcoholic steatohepatitis, but less information exists regarding adaptation of mitochondrial function during the initiation of hepatic steatosis. This study aimed to determine in rat liver the sequence of mitochondrial and metabolic adaptations occurring during the first 8 weeks of a moderate high fat diet (HFD). Sprague-Dawley rats were fed a HFD during 2, 4, and 8 weeks. Mitochondrial oxygen consumption, respiratory chain complexes activity, and oxidative phosphorylation efficiency were assessed in isolated liver mitochondria. Gene expression related to fat metabolism and mitochondrial biogenesis were determined. Results were compared to data collected in a group of rats sacrificed before starting the HFD feeding. After 2 and 4 weeks of HFD, there was a development of fatty liver and a concomitant increase the expression of mitochondrial glycerol-3-phosphate acyltransferase (mtGPAT) and peroxisome proliferator-activated receptor γ. Higher serum β-hydroxybutyrate levels and enhanced hepatic pyruvate dehydrogenase kinase 4 expression suggested increased fatty acid oxidation. However, mitochondrial respiration and respiratory chain activity were normal. After 8 weeks of HFD, lower accumulation of liver triglycerides was associated with reduced expression of mtGPAT. At this time, oxygen consumption with palmitoyl-L: -carnitine was decreased whereas oxidative phosphorylation efficiency (ATP/O) with succinate was enhanced. Hepatic levels of mtDNA were unchanged whatever the time points. This longitudinal study in rats fed a HFD showed that hepatic lipid homeostasis and mitochondrial function can adapt to face the increase in fatty acid availability.  相似文献   

15.
1. Normal and partially hepatectomized rats (150g) were injected daily with d-chloramphenicol (20mg) for a period of 4 weeks, in order to investigate whether defective mitochondria could be induced in vivo in higher organisms as in yeast, and to measure the degree of inhibition of the mitochondrial function thus obtained. 2. The antibiotic did not affect growth and increased the amount of liver protein without changing the mitochondrial yield. 3. The respiration of isolated mitochondria from regenerated liver (regeneration completed) with succinate, α-oxo-glutarate, isocitrate and malate, was decreased in the chloramphenicol-treated rats, whereas in normal liver the antibiotic increased the mitochondrial oxygen consumption with succinate and did not significantly change the respiration with other substrates. 4. Mitochondrial cytochromes and respiratory enzymes were also decreased in amount in regenerated liver from the treated rats and enhanced in normal liver. 5. The protein specific radioactivities of most mitochondrial and microsomal subfractions, 30min after an injection of [14C]leucine, were decreased in regenerated liver under the action of chloramphenicol. Conversely, the incorporation of [14C]leucine into proteins of most subfractions in incubations of liver slices was enhanced in the case of normal rats treated with the antibiotic. 6. It is concluded that in regenerated liver chloramphenicol induces functionally defective mitochondria by inhibiting their biogenesis, whereas in normal liver the stimulation of respiration and protein synthesis is probably a secondary detoxication response.  相似文献   

16.
Abstract: Age-dependent changes in the oxidative metabolism in nonsynaptic and synaptic mitochondria from brains of 3, 12, and 24-month-old rats were investigated. When pyruvate and malate were used in conjunction as substrates, a significant reduction in State 3 respiration was observed in both mitochondrial populations from 12-and 24-month-old rats compared with 3-month-old animals. A similar age-dependent reduction in the oxidation of [1-11C]pyruvate was also observed in nonsynaptic and synaptic mitochondria from senescent rats. Pyruvate dehydrogenase complex activity (both active and total) was, however, not decreased in the two mitochondrial populations from brains of 3, 12, and 24-month-old rats. When DL-3-hydroxybutyrate plus malate were used as substrates, a decrease in State 3 respiration was observed only in synaptic mitochondria from 24-month-old rats compared with 3- month-old animals. Similarly, an age-dependent reduction in the oxidation of 3-hydroxy[3-11C]butyrate was also observed only in synaptic mitochondria from 12-and 24-month-old rats. However, a significant reduction in the activities of ketone body-metabolizing enzymes, namely, 3-hydroxybutyrate dehydrogenase, 3-ketoacid CoA transferase, and acetoacetyl-CoA thiolase was observed in both mitochondrlal populations from 12- and 24-month-old rats compared with 3 month-old animals. These findings show that specific alterations in oxidative metabolism occur in nonsynaptic and synaptic mitochondria from aging rats. The data also suggest that in addition to alterations in enzyme activities, permeability of anions (e.g. pyruvate) across the inner mitochondrial membrane may be altered in nonsynaptic and synaptic mitochondria from senescent animals.  相似文献   

17.
The control of isocitrate oxidation by rat liver mitochondria   总被引:3,自引:1,他引:2  
1. The factors capable of affecting the rate of isocitrate oxidation in intact mitochondria include the rate of isocitrate penetration, the activity of the NAD-specific and NADP-specific isocitrate dehydrogenases, the activity of the transhydrogenase acting from NADPH to NAD(+), the rate of NADPH oxidation by the reductive synthesis of glutamate and the activity of the respiratory chain. A quantitative assessment of these factors was made in intact mitochondria. 2. The kinetic properties of the NAD-specific and NADP-specific isocitrate dehydrogenases extracted from rat liver mitochondria were examined. 3. The rate of isocitrate oxidation through the respiratory chain in mitochondria with coupled phosphorylation is approximately equal to the maximal of the NAD-specific isocitrate dehydrogenase but at least ten times as great as the transhydrogenase activity from NADPH to NAD(+). 4. It is concluded that the energy-dependent inhibition of isocitrate oxidation by palmitoylcarnitine oxidation is due to an inhibition of the NAD-specific isocitrate dehydrogenase. 5. Kinetic studies of NAD-specific isocitrate dehydrogenase demonstrated that its activity could be inhibited by one or more of the following: an increased reduction of mitochondrial NAD, an increased phosphorylation of mitochondrial adenine nucleotides or a fall in the mitochondrial isocitrate concentration. 6. Uncoupling agents stimulate isocitrate oxidation by an extent equal to the associated stimulation of transhydrogenation from NADPH to NAD(+). 7. A technique is described for continuously measuring with a carbon dioxide electrode the synthesis of glutamate from isocitrate and ammonia.  相似文献   

18.
The changes in liver mitochondrial respiratory activities and cytochrome concentrations were investigated when cadmium chloride was administered orally to adult, young, and ethionine-fed rats. Following a seven-day administration of 30 ppm cadmium in drinking water, adult rats showed no change, while young rats and ethionine-fed rats exhibited a marked increase in mitochondrial respiration with concomitant decrease of respiratory control index and P/O ratio. The concentrations of cytochromes aa3, b, and c + c1 in liver mitochondria were unchanged in adult rats, but increased significantly in ethionine-fed rats. In young rats receiving cadmium the liver mitochondrial protein increased with a slight change in the cytochrome concentration in mitochondria. It was further found that in adult rats a higher concentration (300 ppm) of cadmium in drinking water was toxic to the liver mitochondrial functions. Thus, the effect of oral administration of cadmium on the liver mitochondrial function depends on the condition of the animals.  相似文献   

19.
Rats malnourished since birth and fed on a protein-free diet for 2 weeks showed a 23-27% decrease in the State-3 oxidation of glutamate, succinate and ascorbate + NNN' N'-tetramethyl-p-phenylenediamine by liver mitochondria compared with control fed animals. ATP synthesis and the respiratory control index were diminished at the three coupling sites, but significant alterations were not observed in ADP/O ratios. Vmax. for NADH oxidation in electron-transport particles was 40% lower. Mitochondrial cytochromes b and c1 remained unchanged, but cytochrome c was increased by 26%. Cytochromes a + a3 were diminished by 22%. Vmax. for mitochondrial ATPase was 23% lower. These results suggest that the lower content of cytochrome a + a3 at the rate-controlling step of oxidative phosphorylation in malnourished rats might be mainly responsible for the decrease in substrate oxidations as well as ATP synthesis at the three coupling sites. The decreased synthesis and hydrolysis of ATP suggests that other energy-dependent mitochondrial processes could be decreased during malnutrition.  相似文献   

20.
We aimed to study the change in mitochondrial oxidative phosphorylation efficiency occurring at the early stage of septic shock in an experimental model. Thirty-six male Wistar rats were divided into two groups. In the first group, a cecal ligation and puncture (CLP) was carried out to induce septic shock for 5 h. The second group includes sham-operated rats and constitutes the control group. Blood gas analysis, alanine amino transferase, and lactic acid dosages were assayed 5 h after surgery. Liver mitochondria were isolated for in vitro functional characterization, including mitochondrial respiratory parameters, oxidative phosphorylation efficiency, oxi-radical production, membrane potential, and cytochrome c oxidase activity and content. Liver interleukin 1β (IL-1β) and tumor necrosis α mRNA levels were determined. Septic shock induced a severe hypotension occurring 180 min after CLP in association with a metabolic acidosis, an increase in plasma alanine amino transferase, liver IL-1β gene expression, and mitochondrial reactive oxygen species production. The rates of mitochondrial oxygen consumption and the activity and content of cytochrome c oxidase were significantly decreased while no alterations in the oxidative phosphorylation efficiency and inner membrane integrity were found. These results show that contrary to what was expected, liver mitochondria felt to adjust their oxidative phosphorylation efficiency in response to the decrease in the mitochondrial oxidative activity induced by CLP. This loss of mitochondrial bioenergetics plasticity might be related to mitochondrial oxidative stress and liver cytokines production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号