首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文结合Iwao零频率法和Gerrard阈限密度法,提出一种改进的种群密度估计方法──“综合阈限密度估计法”,并由此探讨了苹果树上山楂叶螨成螨的密度估计及其抽样技术.采用零样频率来估计成螨的平均密度,并得到用概率保证的理论抽样数模型.比较结果表明,零频率法所需的理论抽样数少于直接计数法.综合阈限密度估计法的拟合效果更为显著.  相似文献   

2.
宁仲根  严叔平 《昆虫知识》1997,34(6):343-345
在田间调查昆虫数量是非常耗费时间和人力的,尤其在确定某种害虫防治对象田时,面积大,时间性强,迫切需求一种简便、迅速、可靠的密度估值方法。丁岩钦[1]研究了华北棉区棉铃虫无虫率与百株虫口密度之间的频率一密度关系,采用了Wilson的公式,得到很好拟合,这样只要知道无虫样本数就可估得百株虫口数,应用效果良好。此外,描述这种频率一密度曲线的模型还有Gerrar的文一到一及Kono的P0=e-axb等[2,3]。这些模型在精度要求不是很高的场合,是很适用的。这里,作者举实例介绍这几种模型。1昆虫种群密度估计的几种模型1.1Wilson模型式…  相似文献   

3.
雷击火的发生与气象因子之间存在着密切的关系。该文选用符合大兴安岭地区林火发生数据结构的负二项(negative binomial,NB)和零膨胀负二项(zero-inflated negative binomial,ZINB)两种模型对大兴安岭林区1980–2005年间雷击火的发生与气象因素间的关系进行建模分析,并与以往研究中所使用的最小二乘(OLS)回归方法相对比。使用SAS和R-Project统计软件进行模型拟合运算,计算得出模型各参数。结果表明,NB和ZINB模型对数据拟合较好,模型内各气象因子显著性水平较高,对雷击火发生次数均具有较好的预测能力。运用AIC和Vuong等检验方法,进一步比较了NB和ZINB模型对数据的拟合水平以及模型预测水平,结果表明ZINB模型无论在数据拟合还是模型预测上都要优于NB模型。提出了大兴安岭地区林火发生与气象因子关系的最优模型。  相似文献   

4.
菜蚜种群抽样理论的蒙特卡洛试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
北京地区秋白菜上蚜虫种群在其一定发展阶段的空间格局是可以用Pearson Ⅲ型分布拟合的。用蒙特卡洛试验研究这种分布的三个参数——平均数Ex,变异系数Cv和偏态系数Cs的估计误差同样本容量的关系是有效的途径。本文介绍了该试验的设计思想和实施步骤,并得出初步结论:以一株菜为一个样本单位计数白菜上的蚜虫头数,则在允许误差不大于5%的情况下,样本容量为50时,用矩法便可足够准确地估计Ev和Cv值了;但对于估计Cv值,则样本容量应为500左右。  相似文献   

5.
本文对昆虫种群调查常用抽样方法的局限性和改进方法进行了探讨,提出了作者的新见解。  相似文献   

6.
棉田绿盲蝽的空间分布型及其抽样模型   总被引:2,自引:0,他引:2  
2009—2010年于河北省廊坊市对棉田绿盲蝽Apolygus lucorum(Meyer-Dür)的空间分布型及其抽样模型进行了研究。结果表明,绿盲蝽成虫空间分布型与其种群密度有关,当种群密度大于百株1.6头时呈随机分布,当小于百株1.6头时一般呈聚集分布;绿盲蝽若虫在不同种群密度下均呈聚集分布;绿盲蝽整个种群呈Possion分布。应用Iwao的抽样模型建立了棉田绿盲蝽的理论抽样数公式:N=(1.35/x珋)/D2。  相似文献   

7.
棕榈蓟马在茄子上的种群增长、分布和抽样技术研究   总被引:4,自引:1,他引:4  
棕榈蓟马在茄子上的种群增长,用种群增长模型来分析,露地栽培的成虫、若虫种群增长率r分别为0.0630和0.0801,设施栽培分别为0.0983和0.1036。设施栽培的逻辑斯蒂曲线的K值为33.90,明显大于露地栽培的K值23.50。棕榈蓟马种群在茄子上空间分布调查结果,成、若虫的M^*-M回归式分别为M=0.6011+1.468M和M^*=7.2515+2.0640M。成虫+若虫的M-M回归式为  相似文献   

8.
本文提出了一种二次等距抽样方法,并提出了总体平均值的一个估计量:拼配部分的比型估计与轮换部分的样本均值的加权平均。当样本量较大时,求出了估计量的方差及最优轮换比.并对特殊情形进行了讨论和数值比较.  相似文献   

9.
杨树上云斑天牛种群的空间格局及抽样技术   总被引:8,自引:0,他引:8  
云斑天牛Batocera horsfieldi是我国南方杨树的重要蛀干害虫, 研究云斑天牛种群的空间格局和抽样技术, 可为该虫的危害调查与防治提供理论依据。应用Taylor的幂法则、Iwao m*-m回归分析法及6个聚集指标, 对云斑天牛种群的卵、幼虫、蛹或成虫的空间分布型和抽样技术进行了研究, 并做了影响因素分析。结果表明: 云斑天牛的卵、幼虫、蛹或成虫在杨树上均呈聚集分布, 分布的基本成分是个体群, 其聚集性随密度的增加而增大。运用Iwao m*-m回归中的两个参数α和β值, 计算出了在不同精度下以刻槽、排粪孔和羽化孔为防治指标时的理论抽样数据表及序贯抽样数据表,生产中可查阅使用。  相似文献   

10.
三叶斑潜蝇Liriomyza trifolii是我国重要的园艺及蔬菜害虫,研究三叶斑潜蝇种群的空间格局和抽样技术,可为该虫的危害调查与防治提供理论依据。应用Iwao m*-m回归分析法、Taylor的幂法则及6个聚集指标,对三叶斑潜蝇幼虫在番茄和豇豆上的空间分布型和抽样技术进行了研究,并做了影响因素分析。结果表明:三叶斑潜蝇幼虫在番茄和豇豆上均呈聚集分布,分布的基本成分是以个体群形式存在,通过分布型参数,采用Kc法、Iwao法及Taylor幂法计算出了在不同精度下三叶斑潜蝇田间的理论抽样数。  相似文献   

11.
The limits on probabilities under which usual sampling model is to be preferred over binomial sampling model have been worked out.  相似文献   

12.
    
The commonly used method to test for the binomial distribution is the x2-test. In this paper, we introduce an alternative method to test for the binomial distribution. Suppose N is the number of sample groups with n individuals each, xij is the jth sample in ith group, a Bernoulli variable with parameter and VVI=s2/[m(1 - m)/n]. Then it is well know that the asymptotic distribution of the statistic (N - 1) VVI is x2(N - 1) under the hypothesis p1 = p2 = … = pN. Here we find that VVI has an asymptotic normal distribution N(1, 2(1 - 1/n)/(N - 1)). Unlike the x2-statistic, the variance of the normal test statistic is a function of n. This method is convenient in detecting spatial patterns and dispersion in the study of diseased organisms (e.g., plants) in field samples.  相似文献   

13.
  总被引:4,自引:1,他引:4  
Etienne RS  Alonso D 《Ecology letters》2005,8(11):1147-1156
The importance of dispersal for biodiversity has long been recognized. However, it was never advertised as vigorously as Stephen Hubbell did in the context of his neutral community theory. After his book appeared in 2001, several scientists have sought and found analytical expressions for the effect of dispersal limitation on community composition, still in the neutral context. This has been done along two relatively independent lines of research that have a different mathematical approach and focus on different, yet related, types of results. Here, we study both types in a new framework that makes use of the sampling nature of the theory. We present sampling distributions that contain binomial or hypergeometric sampling on the one hand, and dispersal limitation on the other, and thus views dispersal limitation as ubiquitous as sampling effects. Further, we express the results of one line of research in terms of the other and vice versa, using the concept of subsamples. A consequence of our findings is that metacommunity size does not independently affect the outcome of neutral models in contrast to a previous assertion (Ecol. Lett., 7, 2004, p. 904) based on an incorrect formula (Phys. Rev. E, 68, 2003, p. 061902, eqns 11-14). Our framework provides the basis for development of a dispersal-limited non-neutral community theory and applies in population genetics as well, where alleles and mutation play the roles of species and speciation respectively.  相似文献   

14.
烟草潜叶蛾幼虫空间分布型及其应用研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文就烟草潜叶蛾幼虫空间分布型及其垂直分布规律进行了探讨,结果表明:烟草潜叶蛾幼虫在田间呈聚集分布,聚集强度不因种群密度的改变而改变,幼虫主要聚集分布在烟草下部第一段(4片叶)上;降集或随机分布在第二段上;随机分布在第三段上,此外,应用虫株率进行田间种群密度的估计,其中Wilson模型和Gerrard模型所配理论曲线的预测值与实测值显著适合,但Gerrard模型的抽样估计误差较Wilson模型的小,最后本文用Taylor式中的参数a,b确定理论抽样数及序贯抽样,其模型分别为。  相似文献   

15.
The process generating the negative binomial in the distribution pattern of eggs of the common cabbage butterfly, Pieris rapae crucivora, was investigated by releasing the female adults in a net house where cabbages were planted. The distribution of butterflies visited and laid an egg or more per plant followed thePoisson series under the uniform light condition, while that of eggs laid per visit conformed to the logarithmic distribution. From these results, it may be concluded that the negative binomial arises from compounding of thePoisson and the logarithmic distribution. The observed frequency of eggs found per plant fitted to the negative binomial with parameter thus computed theoretically. The change in the degree of aggregation with the increase of the parental density was considered in connection with the above results.  相似文献   

16.
To investigate the relation between the distribution pattern of eggs and the parental density in the common cabbage butterfly, Pieris rapae crucivora, the countings of egg number per plant were made on both cabbage plants cultivated in the farm and planted in the net house in which the female butterflies were released at various densities. The frequency distribution of eggs fits well to the negative binomial excepting the cases where they agree withPoisson series, and the degree of aggregation expressed as the reciprocal of the parameter, 1/k, tends to decrease as the egg or parental density increases. At the same parental density, however, the distribution of eggs can be described by the negative binomial with a common parameter, kc, regardless of the difference in the density of laid eggs. In the case where a single female butterfly lays eggs, the spatial pattern of egg distribution is always lean, while its frequencies conform toPoisson or the negative binomial series. This lean changes toward patchy with increasing the parental density. From these results, it is concluded that the degree of aggregation in the distribution of eggs decreases with the increase of the parental density.  相似文献   

17.
  总被引:1,自引:0,他引:1  
BELLHOUSE  D. R. 《Biometrika》1977,64(3):605-611
  相似文献   

18.
  总被引:1,自引:0,他引:1  
Summary .  We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike's information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.  相似文献   

19.
    
We present a new global method for the identification of hotspots in conservation and ecology. The method is based on the identification of spatial structure properties through cumulative relative frequency distributions curves, and is tested with two case studies, the identification of fish density hotspots and terrestrial vertebrate species diversity hotspots. Results from the frequency distribution method are compared with those from standard techniques among local, partially local and global methods. Our approach offers the main advantage to be independent from the selection of any threshold, neighborhood, or other parameter that affect most of the currently available methods for hotspot analysis. The two case studies show how such elements of arbitrariness of the traditional methods influence both size and location of the identified hotspots, and how this new global method can be used for a more objective selection of hotspots.  相似文献   

20.
A note on robust density estimation for spatial point patterns   总被引:3,自引:0,他引:3  
DIGGLE  PETER J. 《Biometrika》1977,64(1):91-95
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号