首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotyping of white spot syndrome virus prevalent in shrimp farms of India   总被引:1,自引:0,他引:1  
DNA extracts from white spot syndrome virus (WSSV) that had infected post-larvae and juveniles of cultured shrimp, wild shrimp and crabs, which had been collected from different hatcheries and farms located along both the east and west coasts of India, revealed considerable variation in several previously identified WSSV DNA repeat regions. These include the 54 bp repeat in ORF 94, the 69 bp repeat in ORF 125 and the compound 45 and 57 bp repeat region in ORF 75. In ORF 94, 13 genotypes were observed with the number of repeats ranging from 2 to 16 units. While 7 repeat units were commonly observed (11.3%), no samples with 11 or 15 repeat units were found. In ORF 125, 11 types were found, with repeats ranging from 2 to 14 units. The most prevalent genotype displayed 4 repeat units (47.1%); no samples with 6 or 13 repeats were observed. The compound repeat region of ORF 75 displayed 6 different patterns of repeats. Samples with the same repeat pattern in one ORF did not always show identical repeat patterns in one or both of the other repeat regions. These data suggest that combined analysis of all 3 variable loci could be used to differentiate and characterize specific WSSV strains. For general epidemiological studies, the best marker with maximum variation is ORF 94, followed by ORF 125 and ORF 75. The 3 repeat regions above were used to compare WSSV genotypes from disease outbreaks on 3 sets of farms from different locations in the state of Andhra Pradesh. The genotypes within each farm set were almost identical, but differed between farm sets, suggesting that WSSV transmission occurred directly through virus carriers or water exchange between adjacent farms at each location. These findings show that genotyping can be a useful epidemiological tool for tracing the movement of WSSV within infected populations.  相似文献   

2.
3.
White spot syndrome virus (WSSV) presently causes the most serious losses to shrimp farmers worldwide. Earlier reports of high DNA sequence homology among isolates from widely separated geographical regions suggested that a single virus was the cause. However, we have found surprisingly high variation in the number of 54 bp DNA repeats in ORF94 (GenBank AF369029) from 55 shrimp ponds (65 shrimp samples) experiencing WSSV outbreaks in Thailand in 2000 and 2002. These were detected by PCR amplification using primers ORF94-F and ORF94-R flanking the repeat region. Altogether, 12 different repeat groups were found (from 6 to 20 repeats) with 8 repeats being most frequent (about 32%). Extracts prepared from individual shrimp in the same outbreak pond belonged to the same repeat group while those collected at the same time from separate WSSV outbreak ponds, or from the same ponds at different times, usually belonged to different repeat groups. This suggested that different outbreaks were caused by different WSSV isolates. In contrast to the highly variable numbers of repeats, sequence variation within the repeat region was confined to either T or G at Position 36. These variations may be useful for epidemiological studies on the local and global movement of WSSV, since there is high variation in the number of repeats (good for local studies) but little sequence change (good for global studies).  相似文献   

4.
White spot syndrome virus (WSSV), Taura syndrome virus (TSV) and Infectious hypodermal and haematopoietic necrosis virus (IHHNV) are three shrimp viruses responsible for major pandemics affecting the shrimp farming industry. Shrimps samples were collected from 12 farms in Zhejiang province, China, in 2008 and analyzed by PCR to determine the prevalence of these viruses. From the 12 sampling locations, 8 farms were positive for WSSV, 8 for IHHNV and 6 for both WSSV and IHHNV. An average percentage of 57.4% of shrimp individuals were infected with WSSV, while 49.2% were infected with IHHNV. A high prevalence of co-infection with WSSV and IHHNV among samples was detected from the following samples: Bingjiang (93.3%), liuao (66.7%), Jianshan (46.7%) and Xianxiang (46.7%). No samples exhibited evidence of infection with TSV in collected samples. This study provides comprehensive information of the prevalence of three shrimp viruses in Zhejiang and may be helpful for disease prevention control in this region.  相似文献   

5.
Recent studies showed that white spot syndrome virus(WSSV)isolates from different geographic locations share a high genetic similarity except the variable regions in ORF23/24 and ORF14/15,and variable number of tandem repeats(VNTR)within ORF94.In this study,genotyping was performed according to these three variable regions among WSSV isolates collected during 1998/1999 from Southern China.These WSSV isolates contain a deletion of 1168,5657,5898,9316 and 11093 bp,respectively in the variable region ORF23/24compared with WSSV-TW,and a deletion of 4749 or 5622 bp in the variable region ORF14/15 relative to TH-96-II.Four types of repeat units(RUs)(6,8,9 and 13 RUs)in ORF94 were detected in these isolates,with the shortest 6 RUs as the most prevalent type.Our results provide important information for a better understanding of the spatio-temporal transmission mode and the WSSV genetic evolution lineage.  相似文献   

6.
康桦华  陆承平 《病毒学报》2007,23(6):490-493
对虾白斑综合征病毒(White spot syndromevirus,WSSV)是对虾养殖的主要病原之一,它是目前发现的基因组最大的动物病毒,为环状双链DNA病毒[1,2],全基因组序列分析结果显示,对虾白斑综合征病毒和其他杆状病毒相差甚远,最新病毒分类报告已将该病毒划归新建立的线头病毒科(Nima-viridae)白斑病毒属(Whispovirus)[3,4]。目前Gen-Bank公布有3个版本的WSSV全序列[1,2],其基因组大小的测定结果相差较大。不同的WSSV毒株可能在形态结构、理化性质上无法区分,但病毒基因组限制酶切片段长度多态性(RFLP)可以将之区分开来,Marks等[6,7]通过计…  相似文献   

7.
Variable genomic loci were examined in 4 white spot syndrome virus (WSSV) isolates (08HB, 09HB, 08JS and 09JS) from Procambarus clarkii crayfish collected from Jiangsu and Hubei Provinces in China in 2008 and 2009. In ORF75, sequence variation detected in the 4 isolates, as well as in isolates sequenced previously, suggested that WSSV might have segregated into 2 lineages since first emerging as a serious pathogen of farmed shrimp in East Asia in the early-mid 1990s, with one lineage remaining in East Asia and the other separating to South Asia. In ORF23/24, deletions of 9.31, 10.97, or 11.09 kb were evident compared to a reference isolate from Taiwan (WSSV-TW), and, in ORF14/15, deletions of 5.14 or 5.95 kb were evident compared to a reference isolate from Thailand with the largest genome size (TH-96-II). With respect to these genome characteristics, the crayfish isolates 08HB, 09HB and 08JS were similar to WSSV-TW and the isolate 09JS was similar to a reference isolate from China (WSSV-CN). In addition to these loci, sequence variation was evident in ORF94 and ORF125 that might be useful for differentiating isolates and in epidemiological tracing of WSSV spread in crayfish farmed in China. However, as all 4 crayfish isolates possessed a Homologous Region 9 sequence identical to isolate WSSV-TW and another Thailand isolate (WSSV-TH), and as their transposase sequence was identical to isolates WSSV-CN and WSSV-TH, these 2 loci were not useful in predicting their origins.  相似文献   

8.
9.
This paper describes the utility of dead shrimp samples in epidemiological investigations of the white spot syndrome virus (WSSV) and chronic bacterial infections. A longitudinal observational study was undertaken in shrimp farms in Kundapur, Karnataka, India, from September 1999 to April 2000 to identify risk factors associated with outbreaks of white spot disease (WSD) in cultured Penaeus monodon. As a part of the larger study, farmers were trained to collect and preserve dead and moribund shrimp (when observed) during the production cycle. At the end of the production cycle, 73 samples from 50 ponds had been collected for histopathology and 55 samples from 44 ponds for PCR. Intranuclear viral inclusion bodies diagnostic of WSSV infection were detected in dead samples from 32 ponds (64 %). Samples of dead shrimp from 18 ponds (36%) showed no histopathological evidence of WSSV infection. However, of these, samples from 13 ponds (26%) showed clear evidence of shell, oral, enteric and systemic chronic inflammatory lesions (CIL) in the form of haemocytic nodules, typical of bacterial infection. Samples from 5 ponds (10%) were negative for both WSSV and CIL. Samples from 8 ponds had dual WSSV and CIL, although both WSSV and CIL were only observed in the same shrimp from 1 pond. Useful information was obtained from these shrimp despite the presence of post-mortem changes. Samples from 19 ponds (43%) tested positive for WSSV by 1-step PCR and samples from an additional 10 ponds (22.7%) were positive by 2-step nested PCR. Samples from 15 ponds (34.1%) were negative for WSSV by 2-step nested PCR. There was moderate to substantial agreement between PCR and histopathology in the diagnosis of WSSV infection in dead shrimp. WSSV infection in dead shrimp was significantly associated with crop failures as defined by a shorter length of the production cycle (<90 d) and lower average weight at harvest (<22 g). WSSV infection was also associated with lower survival (<50%), but this was not significant. Ponds with CIL did not experience any crop failures, and the presence of CIL was significantly associated with successful crops. The study demonstrates that samples of dead shrimp can provide useful information for disease surveillance and epidemiological investigations of WSSV and chronic bacterial infections.  相似文献   

10.
多重RT-PCR同时检测鉴别三种对虾病毒的研究与应用   总被引:7,自引:0,他引:7  
根据基因库中对虾桃拉综合征病毒(TSV)、白斑综合征病毒(WSSV)、传染性皮下和造血器官坏死病毒(IHHNV)的基因序列,分别设计了三对特异性引物,通过对多重RT—PCR扩增条件的优化,研究建立了可同时检测鉴别TSV、WSSV和IHHNV的多重RT—PCR。该技术对同一样品中的TSV RNA、WSSV DNA和IHHNV DNA模板进行扩增,结果均同时得到3条大小与实验设计相符的231bp(TSV)、593bp(WSSV)和356bp(IHHNV)的特异性多重RT—PCR扩增带,对其它对虾病原核酸的扩增结果为阴性。敏感性试验结果表明,该技术最低能检测到10pgTSV RNA、100pg WSSV DNA和100pg IHHNV DNA。临床检测试验结果表明,该技术对TSV、WSSV和I—HHNV的检出率明显高于传统的临床症状观察和组织病理学检查,提示该技术适用于这三种病毒的临床快速检测和鉴别诊断。  相似文献   

11.
White spot syndrome virus (WSSV) is one of the major causes of disease in the shrimp culture industry causing enormous economic losses. In this study, we displayed peptides from a cDNA library obtained from the hemolymph of shrimp infected with WSSV, on the surface of phage and screened for the peptides that interacted with the WSSV. One WSSV binding protein (WBP) gene was found to consist of 171 bp that had no matches in the NCBI database. This WBP was shown to bind to the VP26 protein of the WSSV by Western blotting. In addition, WBP reduced the binding of WSSV to shrimp haemocytes from 2.0 × 10(7)copies in the control to 6.0 × 10(2) after treatment with 80 μg of WBP. The survival rate of shrimp after WSSV were mixed with WBP at 80 μg, was 89% and the binding of WBP remained unchanged for at least 24h. Therefore, the results indicate that the WBP can bind to VP26 and inhibit the invasion of WSSV into host cells. This finding may introduce another future way to try to fight this disease in shrimp culture.  相似文献   

12.
Chimeric positive plasmids have been developed to minimize false-positive reactions caused by polymerase chain reaction (PCR) contamination. Here, we developed a rapid method for identifying false-positive results while detecting white spot syndrome virus (WSSV) by nested PCR, using chimeric positive plasmids. The results of PCRs using WSSV diagnostic primer sets showed PCR products of a similar size (WSSV 1st PCR product, 1,447 bp; WSSV 2nd PCR product, 941 bp) using WSSV chimeric plasmids or DNA from shrimp infected with WSSV. The PCR products were digested with DraI for 1 h at 37 °C. The digested chimeric DNA separated into two DNA bands; however, the WSSV-infected shrimp DNA did not separate. Thus, chimeric plasmid DNA may be used as positive control DNA instead of DNA from WSSV-infected shrimp, in order to prevent PCR contamination. Thus, the use of restriction enzyme digestion allowed us to rapidly distinguish between WSSV DNA and WSSV chimeric plasmid DNA.  相似文献   

13.
Foraminiferal assemblages have been studied in 33 samples from the Can Gio region to the north of the Mekong Delta and from two regions of the Delta: the Tra Vinh province, in the middle part of the Delta; and the Ca Mau peninsula, to the south. Two plates, including 117 pictures, illustrate the species. These assemblages, either through the nature of the test or through the calculation of the confinement index Ic, clearly indicate differences in the balance between continental and marine influences, the Tra Vinh province being subject to the strongest freshwater influence. The decrease of calcareous specimens and the increase of Ic indicate the impact of deforestation in the Ca Mau peninsula, the influence of organic matter in shrimp ponds, and the impact of pollution in a tidal channel. The distribution of foraminiferal assemblages described in this study should be used as part of a reference point for further observations with a view to assessing environmental impacts of increasing human activities and/or global change.  相似文献   

14.
Zwart MP  Dieu BT  Hemerik L  Vlak JM 《PloS one》2010,5(10):e13400

Background

White spot syndrome virus (WSSV) is the sole member of the novel Nimaviridae family, and the source of major economic problems in shrimp aquaculture. WSSV appears to have rapidly spread worldwide after the first reported outbreak in the early 1990s. Genomic deletions of various sizes occur at two loci in the WSSV genome, the ORF14/15 and ORF23/24 variable regions, and these have been used as molecular markers to study patterns of viral spread over space and time. We describe the dynamics underlying the process of WSSV genome shrinkage using empirical data and a simple mathematical model.

Methodology/Principal Findings

We genotyped new WSSV isolates from five Asian countries, and analyzed this information together with published data. Genome size appears to stabilize over time, and deletion size in the ORF23/24 variable region was significantly related to the time of the first WSSV outbreak in a particular country. Parameter estimates derived from fitting a simple mathematical model of genome shrinkage to the data support a geometric progression (k<1) of the genomic deletions, with k = 0.371±0.150.

Conclusions/Significance

The data suggest that the rate of genome shrinkage decreases over time before attenuating. Bioassay data provided support for a link between genome size and WSSV fitness in an aquaculture setting. Differences in genomic deletions between geographic WSSV isolates suggest that WSSV spread did not follow a smooth pattern of geographic radiation, suggesting spread of WSSV over long distances by commercial activities. We discuss two hypotheses for genome shrinkage, an adaptive and a neutral one. We argue in favor of the adaptive hypothesis, given that there is support for a link between WSSV genome size and fitness.  相似文献   

15.
16.
17.
18.
19.
Chromosomal rearrangements, such as deletions, duplications, or Ty transposition, are rare events. We devised a method to select for such events as Ura(+) revertants of a particular ura2 mutant. Among 133 Ura(+) revertants, 14 were identified as the result of a deletion in URA2. Of seven classes of deletions, six had very short regions of identity at their junctions (from 7 to 13 bp long). This strongly suggests a nonhomologous recombination mechanism for the formation of these deletions. The total Ura(+) reversion rate was increased 4.2-fold in a rad52Delta strain compared to the wild type, and the deletion rate was significantly increased. All the deletions selected in the rad52Delta context had microhomologies at their junctions. We propose two mechanisms to explain the occurrence of these deletions and discuss the role of microhomology stretches in the formation of fusion proteins.  相似文献   

20.
The white spot syndrome virus (WSSV) is the causative agent of a severe disease in cultivated shrimp. The virus causes high mortality and leads to heavy stress on shrimps. In response to a variety of stresses, living organisms express particular sets of genes such as HSPs. In this study, a HSP21 gene, categorized into the small heat shock protein (smHSP) family, of shrimp Penaeus monodon was identified by annotating the EST databases established from WSSV-infected and WSSV-uninfected shrimp. The shrimp HSP21 gene was 555 bp in length. The thermal aggregation assay showed that the HSP21 had chaperone activity. The result of real-time PCR indicated that HSP21 was constitutive and inducible and was highly expressed in almost all organs such as the epithelium, gill, stomach, midgut, lymphoid organ, hepatopancreas, nervous tissue and heart, but less expressed in haemolymph. However, HSP21 gene showed down-regulation after WSSV infection. It suggests that gene regulation of HSP21 was seriously affected by WSSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号