首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。  相似文献   

3.
《IRBM》2022,43(5):434-446
ObjectiveThe initial principal task of a Brain-Computer Interfacing (BCI) research is to extract the best feature set from a raw EEG (Electroencephalogram) signal so that it can be used for the classification of two or multiple different events. The main goal of the paper is to develop a comparative analysis among different feature extraction techniques and classification algorithms.Materials and methodsIn this present investigation, four different methodologies have been adopted to classify the recorded MI (motor imagery) EEG signal, and their comparative study has been reported. Haar Wavelet Energy (HWE), Band Power, Cross-correlation, and Spectral Entropy (SE) based Cross-correlation feature extraction techniques have been considered to obtain the necessary features set from the raw EEG signals. Four different machine learning algorithms, viz. LDA (Linear Discriminant Analysis), QDA (Quadratic Discriminant Analysis), Naïve Bayes, and Decision Tree, have been used to classify the features.ResultsThe best average classification accuracies are 92.50%, 93.12%, 72.26%, and 98.71% using the four methods. Further, these results have been compared with some recent existing methods.ConclusionThe comparative results indicate a significant accuracy level performance improvement of the proposed methods with respect to the existing one. Hence, this presented work can guide to select the best feature extraction method and the classifier algorithm for MI-based EEG signals.  相似文献   

4.
Nowadays, brain signals are employed in various scientific and practical fields such as Medical Science, Cognitive Science, Neuroscience, and Brain Computer Interfaces. Hence, the need for robust signal analysis methods with adequate accuracy and generalizability is inevitable. The brain signal analysis is faced with complex challenges including small sample size, high dimensionality and noisy signals. Moreover, because of the non-stationarity of brain signals and the impacts of mental states on brain function, the brain signals are associated with an inherent uncertainty. In this paper, an evidence-based combining classifiers method is proposed for brain signal analysis. This method exploits the power of combining classifiers for solving complex problems and the ability of evidence theory to model as well as to reduce the existing uncertainty. The proposed method models the uncertainty in the labels of training samples in each feature space by assigning soft and crisp labels to them. Then, some classifiers are employed to approximate the belief function corresponding to each feature space. By combining the evidence raised from each classifier through the evidence theory, more confident decisions about testing samples can be made. The obtained results by the proposed method compared to some other evidence-based and fixed rule combining methods on artificial and real datasets exhibit the ability of the proposed method in dealing with complex and uncertain classification problems.  相似文献   

5.
解码癫痫发作前脑电信号的神经元集群异常痫样放电活动,对癫痫发作进行有效预测并实施病前干预,可显著减少疾病病损,是癫痫防治的研究热点之一。基于脑电信号的癫痫发作预测研究关键在于发作间期和前期的异常状态识别,研究上述两状态间的神经动力学特征差异对明确癫痫发病机制、选取高分辨特征,进而有效识别该渐进性疾病所处的发作阶段具有重要价值。目前,研究者已对当前主流特征提取及模式识别方法进行了充分的调研梳理,但忽视了神经动态特征变化对于癫痫发作预测的重要意义。基于此,本文归纳总结了5类典型的发作预测特征分析方法及其优缺点,重点剖析了发作间期至前期神经生理特征的动态变化及其动力学特性,类比分析了当前该领域主流的机器学习和深度学习特征识别方法,以期为进一步建立精准、高效的癫痫发作预测技术提供新思路。  相似文献   

6.
In recent years, the number of patients with neurodegenerative diseases (i.e., Alzheimer’s disease, Parkinson’s disease, mild cognitive impairment) and mental disorders (i.e., depression, anxiety and schizophrenia) have increased dramatically. Researchers have found that complex network analysis can reveal the topology of brain functional networks, such as small-world, scale-free, etc. In the study of brain diseases, it has been found that these topologies have undergoed abnormal changes in different degrees. Therefore, the research of brain functional networks can not only provide a new perspective for understanding the pathological mechanism of neurological and psychiatric diseases, but also provide assistance for the early diagnosis. Focusing on the study of human brain functional networks, this paper reviews the research results in recent years. First, this paper introduces the background of the study of brain functional networks under complex network theory and the important role of topological properties in the study of brain diseases. Second, the paper describes how to construct a brain functional network using neural image data. Third, the common methods of functional network analysis, including network structure analysis and disease classification, are introduced. Fourth, the role of brain functional networks in pathological study, analysis and diagnosis of brain functional diseases is studied. Finally, the paper summarizes the existing studies of brain functional networks and points out the problems and future research directions.  相似文献   

7.
The brain is a large-scale complex network often referred to as the “connectome”. Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the ‘feature extraction’ methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct brain areas. In this paper, the functional connectivity quantified by the phase locking value (PLV) was introduced to characterize the evoked responses (ERPs) obtained in the case of target and non-targets visual stimuli. We also tested the possibility of using the functional connectivity in the context of ‘P300 speller’. The proposed approach was compared to the well-known methods proposed in the state of the art of “P300 Speller”, mainly the peak picking, the area, time/frequency based features, the xDAWN spatial filtering and the stepwise linear discriminant analysis (SWLDA). The electroencephalographic (EEG) signals recorded from ten subjects were analyzed offline. The results indicated that phase synchrony offers relevant information for the classification in a P300 speller. High synchronization between the brain regions was clearly observed during target trials, although no significant synchronization was detected for a non-target trial. The results showed also that phase synchrony provides higher performance than some existing methods for letter classification in a P300 speller principally when large number of trials is available. Finally, we tested the possible combination of both approaches (classical features and phase synchrony). Our findings showed an overall improvement of the performance of the P300-speller when using Peak picking, the area and frequency based features. Similar performances were obtained compared to xDAWN and SWLDA when using large number of trials.  相似文献   

8.
Lei X  Ostwald D  Hu J  Qiu C  Porcaro C  Bagshaw AP  Yao D 《PloS one》2011,6(9):e24642
EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC) is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs) are extracted using spatial independent component analysis (ICA) in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA). Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI). Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.  相似文献   

9.
Absence epilepsy is an important epileptic syndrome in children. Multiscale entropy (MSE), an entropy-based method to measure dynamic complexity at multiple temporal scales, is helpful to disclose the information of brain connectivity. This study investigated the complexity of electroencephalogram (EEG) signals using MSE in children with absence epilepsy. In this research, EEG signals from 19 channels of the entire brain in 21 children aged 5-12 years with absence epilepsy were analyzed. The EEG signals of pre-ictal (before seizure) and ictal states (during seizure) were analyzed by sample entropy (SamEn) and MSE methods. Variations of complexity index (CI), which was calculated from MSE, from the pre-ictal to the ictal states were also analyzed. The entropy values in the pre-ictal state were significantly higher than those in the ictal state. The MSE revealed more differences in analysis compared to the SamEn. The occurrence of absence seizures decreased the CI in all channels. Changes in CI were also significantly greater in the frontal and central parts of the brain, indicating fronto-central cortical involvement of “cortico-thalamo-cortical network” in the occurrence of generalized spike and wave discharges during absence seizures. Moreover, higher sampling frequency was more sensitive in detecting functional changes in the ictal state. There was significantly higher correlation in ictal states in the same patient in different seizures but there were great differences in CI among different patients, indicating that CI changes were consistent in different absence seizures in the same patient but not from patient to patient. This implies that the brain stays in a homogeneous activation state during the absence seizures. In conclusion, MSE analysis is better than SamEn analysis to analyze complexity of EEG, and CI can be used to investigate the functional brain changes during absence seizures.  相似文献   

10.
In this paper, a new approach based on eigen-systems pseudo-spectral estimation methods, namely Eigenvector (EV) and MUSIC, and Multiple Layer Perceptron (MLP) neural network is introduced. In this approach, the calculated EEG (electroencephalogram) spectrum is divided into smaller frequency sub-bands. Then, a set of features, {maximum, entropy, average, standard deviation, mobility}, are extracted from these sub-bands. Next, incorporating a set of the EEG time domain features {standard deviation, complexity measure} with the spectral feature set, a feature vector is formed. The feature vector is then fetched into a MLP neural network to classify the signal into the following three states: normal (healthy), epileptic patient signal in a seizure-free interval (inter-ictal), and epileptic patient signal in a full seizure interval (ictal). The experimental results show that the classification of the EEG signals maybe achieved with approximately 97.5% accuracy and the variance of 0.095% using an available public EEG signals database. The results are among the best reported methods for classifying the three states aforementioned. This is a high speed with high accuracy as well as low misclassifying rate method so it can make the practical and real-time detection of this chronic disease feasible.  相似文献   

11.
In bio-signal applications, classification performance depends greatly on feature extraction, which is also the case for electroencephalogram (EEG) based applications. Feature extraction, and consequently classification of EEG signals is not an easy task due to their inherent low signal-to-noise ratios and artifacts. EEG signals can be treated as the output of a non-linear dynamical (chaotic) system in the human brain and therefore they can be modeled by their dimension values. In this study, the variance fractal dimension technique is suggested for the modeling of movement-related potentials (MRPs). Experimental data sets consist of EEG signals recorded during the movements of right foot up, lip pursing and a simultaneous execution of these two tasks. The experimental results and performance tests show that the proposed modeling method can efficiently be applied to MRPs especially in the binary approached brain computer interface applications aiming to assist severely disabled people such as amyotrophic lateral sclerosis patients in communication and/or controlling devices.  相似文献   

12.
The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.  相似文献   

13.
This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states.  相似文献   

14.
In this paper, we investigate the abnormalities of electroencephalograph (EEG) signals in the Alzheimer’s disease (AD) by analyzing 16-scalp electrodes EEG signals and make a comparison with the normal controls. The power spectral density (PSD) which represents the power distribution of EEG series in the frequency domain is used to evaluate the abnormalities of AD brain. Spectrum analysis based on autoregressive Burg method shows that the relative PSD of AD group is increased in the theta frequency band while significantly reduced in the alpha2 frequency bands, particularly in parietal, temporal, and occipital areas. Furthermore, the coherence of two EEG series among different electrodes is analyzed in the alpha2 frequency band. It is demonstrated that the pair-wise coherence between different brain areas in AD group are remarkably decreased. Interestingly, this decrease of pair-wise electrodes is much more significant in inter-hemispheric areas than that in intra-hemispheric areas. Moreover, the linear cortico-cortical functional connectivity can be extracted based on coherence matrix, from which it is shown that the functional connections are obviously decreased, the same variation trend as relative PSD. In addition, we combine both features of the relative PSD and the normalized degree of functional network to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha2 frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature. The obtained results show that analysis of PSD and coherence-based functional network can be taken as a potential comprehensive measure to distinguish AD patients from the normal, which may benefit our understanding of the disease.  相似文献   

15.
The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG) is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD) signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS) during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04–0.167 Hz) and slow fluctuation (0–0.04 Hz). Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.  相似文献   

16.
Based on the neural efficiency hypothesis and task-induced EEG gamma-band response (GBR), this study investigated the brain regions where neural resource could be most efficiently recruited by the math-gifted adolescents in response to varying cognitive demands. In this experiment, various GBR-based mental states were generated with three factors (level of mathematical ability, task complexity, and short-term learning) modulating the level of neural activation. A feature subset selection method based on the sequential forward floating search algorithm was used to identify an “optimal” combination of EEG channel locations, where the corresponding GBR feature subset could obtain the highest accuracy in discriminating pairwise mental states influenced by each experiment factor. The integrative results from multi-factor selections suggest that the right-lateral fronto–parietal system is highly involved in neural efficiency of the math-gifted brain, primarily including the bilateral superior frontal, right inferior frontal, right-lateral central and right temporal regions. By means of the localization method based on single-trial classification of mental states, new GBR features and EEG channel-based brain regions related to mathematical giftedness were identified, which could be useful for the brain function improvement of children/adolescents in mathematical learning through brain–computer interface systems.  相似文献   

17.
Estimating the functional interactions and connections between brain regions to corresponding process in cognitive, behavioral and psychiatric domains is a central pursuit for understanding the human connectome. Few studies have examined the effects of dynamic evolution on cognitive processing and brain activation using brain network model in scalp electroencephalography (EEG) data. Aim of this study was to investigate the brain functional connectivity and construct dynamic programing model from EEG data and to evaluate a possible correlation between topological characteristics of the brain connectivity and cognitive evolution processing. Here, functional connectivity between brain regions is defined as the statistical dependence between EEG signals in different brain areas and is typically determined by calculating the relationship between regional time series using wavelet coherence. We present an accelerated dynamic programing algorithm to construct dynamic cognitive model that we found that spatially distributed regions coherence connection difference, the topologic characteristics with which they can transfer information, producing temporary network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time after variation audio stimulation, dynamic programing model gives the dynamic evolution processing at different time and frequency. In this paper, by applying a new construct approach to understand whole brain network dynamics, firstly, brain network is constructed by wavelet coherence, secondly, different time active brain regions are selected by network topological characteristics and minimum spanning tree. Finally, dynamic evolution model is constructed to understand cognitive process by dynamic programing algorithm, this model is applied to the auditory experiment, results showed that, quantitatively, more correlation was observed after variation audio stimulation, the EEG function connection dynamic evolution model on cognitive processing is feasible with wavelet coherence EEG recording.  相似文献   

18.
We introduce the notion of Electric Field Encephalography (EFEG) based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2–3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM) head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.  相似文献   

19.
复杂度脑电地形图研究   总被引:3,自引:0,他引:3  
脑电地形图是近年脑电分析的热点之一。通过对各种复杂度算法的分析得出,近似熵由于所需要的时间序列长度较短,大大减少了脑电非平稳性所带来的困难,且无需粗粒化,在对生物医学信号的复杂度分析中有其一定的优点,采用近似熵对多道脑电信号的复杂度运算结果,通过空间插值,构建复杂性动态脑地形图,以便于观察大脑各部EEG信号复杂度在同一时刻的相对强弱关系和这种关系随时间的变化。并通过对一些脑疾病患者脑电数据的分析,  相似文献   

20.
《IRBM》2022,43(6):705-714
BackgroundThe changes in electroencephalogram (EEG) signals that reflect the changes in physiological structure, cognitive functions, and activities have been observed in healthy aging adults. It is unknown that when the brain aging initiates and whether these age-related alterations can be associated with incipient neurodegenerative diseases in healthy elderly individuals.Materials and methodsWe employed feature extraction and classification methods to classify and compare the EEG signals of middle-aged and elderly age groups. This study included 20 healthy middle-aged and 20 healthy elderly subjects. The EEG signals were recorded during a resting state (eyes-open and eyes-closed) and during a working memory (WM) task using eight electrodes. The minimum redundancy maximum relevance technique was employed in the selection of the optimal feature. Four classification methods, including decision tree, support vector machine, Naïve Bayes, and K-nearest neighbor, were used to distinguish the elderly age group from the middle-aged group based on their EEG signals.ResultsIn the resting state, a good correlation was observed among absolute power delta and theta bands and aging, whereas between beta absolute power and aging, a WM task correlation was observed. The results also indicated that the mean frequency and absolute power might be useful for the prediction and classification of EEG signals in aging individuals. Furthermore, the use of the decision tree method in a WM task state distinguished the elderly group from the middle-aged group with an accuracy of 87.5%.ConclusionsWorking memory could play a vital role in the optimization of classification of EEG signals in aging and discrimination of age-related issues associated with neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号