首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Infection of cells by foot-and-mouth disease virus (FMDV) results in the rapid inhibition of host cell protein synthesis. This process is accompanied by the early cleavage of the translation initiation factor eIF4G, a component of the cap-binding complex eIF4F. This cleavage is mediated by the leader (L) protease. Subsequently, as the virus proteins accumulate, secondary cleavages of eIF4G occur. Furthermore, eIF4A (46 kDa), a second component of eIF4F, is also cleaved in these later stages of the infection cycle. The 33-kDa cleavage product of eIF4A has lost a fragment from its N terminus. Transient-expression assays demonstrated that eIF4A was not cleaved in the presence of FMDV L or with the poliovirus 2A protease (which also mediates eIF4G cleavage) but was cleaved when the FMDV 3C protease was expressed. The FMDV 3C protease was also shown in such assays to induce cleavage of eIF4G, resulting in the production of cleavage products different from those generated by the L protease. Consistent with these results, within cells infected with a mutant FMDV lacking the L protease or within cells containing an FMDV replicon lacking L-P1 coding sequences it was again shown that eIF4A and eIF4G were cleaved.  相似文献   

2.
The thiol protease inhibitor E-64 specifically blocks autocatalytic activity of the leader protease of foot-and-mouth disease virus (FMDV) and interferes with cleavage of the structural protein precursor in an in vitro translation assay programmed with virion RNA. Experiments with FMDV-infected cells and E-64 or a membrane-permeable analog, E-64d, have confirmed these results and demonstrated interference in virus assembly, causing a reduction in virus yield. In addition, there is a lag in the appearance of virus-induced cellular morphologic alterations, a delay in cleavage of host cell protein p220 and in shutoff of host protein synthesis, and a decrease in viral protein and RNA synthesis. The implications of using E-64-based compounds as potential antiviral agents for FMDV are discussed.  相似文献   

3.
In poliovirus-infected HeLa cells, poliovirus RNA is translated at times when cellular mRNA translation is strongly inhibited. It is thought that this translational control mechanism is mediated by inactivation of a cap-binding protein complex (comprising polypeptides of 24 [24-kilodalton cap-binding protein], 50, and approximately 220 kilodaltons). This complex can restore the translation of capped mRNAs in extracts from poliovirus-infected cells. We have previously shown that the virally induced defect prevents interaction between cap recognition factors and mRNA. Here, we show that the cap-binding protein complex (and not the 24-kilodalton cap-binding protein) has activity that restores the cap-specific mRNA-protein interaction when added to initiation factors from poliovirus-infected cells. Thus, the activity that restores the cap-specific mRNA-protein interaction and that which restores the translation of capped mRNAs in extracts from poliovirus-infected cells, copurify. The results also indicate, by an alternative assay, that the cap-binding protein complex is the only factor inactivated by poliovirus. We also purified cap-binding proteins from uninfected and poliovirus-infected HeLa cells. By various criteria, the 24-kilodalton cap-binding protein is not structurally modified as a result of infection. However, the 220-kilodalton polypeptide of the cap-binding protein complex is apparently cleaved by a putative viral (or induced) protease. By in vivo labeling and m7GDP affinity chromatography, we isolated a modified cap-binding protein complex from poliovirus-infected cells, containing proteolytic cleavage fragments of the 220-kilodalton polypeptide.  相似文献   

4.
Poliovirus infection of HeLa cells results in a rapid inhibition of host protein synthesis by a mechanism that does not affect the translation of poliovirus RNA. It has been suggested that this virus-induced translational control results from inactivation of the cap-binding protein complex, and it has been shown that the 220-kilodalton component(s) (p220) of the cap-binding protein complex is cleaved in infected HeLa cells to form antigenically related polypeptides of 100 to 130 kilodaltons. We have previously described an activity in infected cells that specifically restricts translation of capped mRNA in rabbit reticulocyte lysates. Here, we describe further refinements and characterization of restriction assay. We determined that the assay is a good in vitro model for study of host cell shutoff by several criteria: (i) translation was inhibited in both instances at the step involving mRNA binding to ribosomes; (ii) translation of capped mRNA was specifically inhibited, whereas translation of poliovirus RNA was not; (iii) restriction activity appeared in infected cells with kinetics which parallel host cell shutoff; and (iv) restriction activity, like the specific inhibition of host translation, appeared in cells infected in the presence of guanidine-HCl. The restricting activity was partially purified from poliovirus-infected cells and was compared with the virus-induced p220 cleavage activity. Both activities copurified through numerous cell fractionation and biochemical fractionation procedures. However, specific restriction of capped mRNA translation in reticulocyte lysates occurred without complete cleavage of the endogenous p220.  相似文献   

5.
Foot-and-mouth disease virus (FMDV) induces a very rapid inhibition of host cell protein synthesis within infected cells. This is accompanied by the cleavage of the eukaryotic translation initiation factor 4GI (eIF4GI). The cleavage of the related protein eIF4GII has now been analyzed. Within FMDV-infected cells, cleavage of eIF4GI and eIF4GII occurs with similar kinetics. Cleavage of eIF4GII is induced in cells and in cell extracts by the FMDV leader protease (L(pro)) alone, generating cleavage products similar to those induced by enterovirus and rhinovirus 2A protease (2A(pro)). By the use of a fusion protein containing residues 445 to 744 of human eIF4GII, it was demonstrated that the FMDV L(pro) specifically cleaves this protein between residues G700 and S701, immediately adjacent to the site (V699/G700) cleaved by rhinovirus 2A(pro) in vitro. The G700/S701 cleavage site does not correspond, by amino acid sequence alignment, to that cleaved in eIF4GI by the FMDV L(pro) in vitro. Knowledge of the cleavage sites and the three-dimensional structures of the FMDV L(pro) and rhinovirus 2A(pro) enabled mutant forms of the eIF4GII sequence to be generated that are differentially resistant to either one of these proteases. These results confirmed the specificity of each protease and showed that the mutant forms of the fusion protein substrate retained their correct sensitivity to other proteases.  相似文献   

6.
Empty capsids of foot-and-mouth disease virus (FMDV) type A22 Iraq 24/64, whose structure has been solved by X-ray crystallography, are unusual for picornaviruses since they contain VP2 and VP4, the cleavage products of the protein precursor VP0. Both the N terminus of VP1 and the C terminus of VP4, which pack together close to the icosahedral threefold symmetry axis where three pentamers associate, are more disordered in the empty capsid than they are in the RNA-containing virus. The ordering of these termini in the presence of RNA strengthens interactions within a single protomer and between protomers belonging to different pentamers. The disorder in the FMDV empty capsid forms a subset of that seen in the poliovirus empty capsid, which has VP0 intact. Thus, VP0 cleavage confers stability on the picornavirus capsid over and above that attributable to RNA encapsidation. In both FMDV and poliovirus empty capsids, the internal disordering uncovers a conserved histidine which has been proposed to be involved in the cleavage of VP0. A comparison of the putative active sites in FMDV and poliovirus suggests a structural explanation for the sequence specificity of the cleavage reaction.  相似文献   

7.
A poliovirus type 2 Lansing mutant was constructed by inserting 6 base pairs into the 2Apro region of an infectious cDNA clone, resulting in the addition of a leucine and threonine into the polypeptide sequence. The resulting small-plaque mutant, 2A-2, had a reduced viral yield in HeLa cells and synthesized viral proteins inefficiently. Infection with the mutant did not lead to specific inhibition of host cell protein synthesis early in infection, and this defect was attributed to a failure to induce cleavage of the cap-binding complex protein p220. At late times after infection with the mutant virus, both cellular and viral protein syntheses were severely inhibited. To explain this global inhibition of protein synthesis, the phosphorylation state of the alpha subunit of eucaryotic initiation factor 2 (eIF-2 alpha) was examined. eIF-2 alpha was phosphorylated in both R2-2A-2- and wild-type-virus-infected cells, indicating that poliovirus does not encode a function that blocks phosphorylation of eIF-2 alpha. The kinetics and extent of eIF-2 alpha phosphorylation correlated with the production of double-stranded RNA in infected cells, suggesting that eIF-2 alpha is phosphorylated by P1/eIF-2 alpha kinase. When HeLa cells were infected with R2-2A-2 in the presence of 2-aminopurine, a protein kinase inhibitor, much higher virus titers were produced, cleavage of p220 occurred, and host cell protein synthesis was specifically inhibited. Since phosphorylation of eIF-2 alpha was not inhibited by 2-aminopurine, we propose that 2-aminopurine rescues the ability of R2-2A-2 to induce cleavage of p220 by inhibition of a second as yet unidentified kinase.  相似文献   

8.
Infection of cells with poliovirus results in the complete shutoff of host protein synthesis. It is presumed that proteolysis of the p220 component of the cap-binding protein complex that is required for the translation of host mRNAs is responsible for the shutoff phenomenon. In this paper, we show that when cells are infected with poliovirus in the presence of guanidine or 3-methylquercetin, both inhibitors of poliovirus replication, complete cleavage of p220 occurs by 3.5 h postinfection. However, under these conditions only 55 to 77% of host protein synthesis is suppressed. Results obtained with extracts prepared from poliovirus-infected cells were similar to those obtained in vivo. These results suggest that complete inhibition of host protein synthesis after poliovirus infection requires at least one event in addition to proteolysis of p220. Thus, proteolysis of p220 is probably necessary but not sufficient for total suppression of host protein synthesis after poliovirus infection.  相似文献   

9.
10.
The ability of different picornavirus internal ribosome entry site (IRES) elements to direct initiation of protein synthesis has been assayed in different cell lines in the presence and absence of viral proteases that inhibit cap-dependent protein synthesis. Reporter plasmids that express dicistronic mRNAs, containing different IRES elements, with the general structure CAT/IRES/LUC, have been assayed. In each plasmid, the CAT sequence encodes chloramphenicol acetyl transferase and the LUC sequence encodes luciferase. The poliovirus (PV) 2A protease and the foot-and-mouth disease virus (FMDV) Lb protease induce the cleavage of the translation initiation factor elF4G and hence inhibit the activity of the cap-binding complex, elF4F. In human osteosarcoma (HTK-143) cells, each of the various IRES elements functioned efficiently. In these cells, the co-expression of the viral proteases severely inhibited the expression of CAT, but the proteases had little effect on the activities of the various IRES elements. In contrast, in baby hamster kidney (BHK) cells, the efficiencies of the different IRES elements varied significantly, whereas, in normal rat kidney (NRK) cells, each of the IRES elements was relatively inefficient. In both BHK and NRK cells, the activities of those IRES elements that functioned inefficiently were strongly stimulated by the co-expression of the PV 2A or FMDV Lb proteases. This stimulation was independent of the loss of cap-dependent protein synthesis and was not achieved by the co-expression of the C-terminal fragment of elF4G. The results suggest that the PV 2A and FMDV Lb proteases induce the cleavage of another cellular protein, in addition to elF4G, which influences IRES function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号