首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pBR322 form V DNA is a highly torsionally strained molecule with a linking number of zero. We have used sequence-specific DNA methylases as probes for B-DNA in this molecule, exploiting the inability of methylases to methylate single-stranded DNA and Z-DNA, both of which are known to occur in form V DNA. Some sequences in form V DNA were shown to be totally in the B-form, others were totally in an altered, unmethylatable conformation, while still other sites appeared to exist partly in altered and partly in normal B-conformation. Some potential Z-forming sequences (alternating pyrimidine/purine) of less than seven base-pairs were not in the Z conformation in form V DNA, whereas others did adopt an altered structure, indicating a modulating influence of flanking sequences. Furthermore, regions of imperfect alternating pyrimidine/purine structure were sometimes capable of adopting an altered structure. In addition, some regions of altered structure had no apparent Z-forming sequences, nor were they in polypurine stretches, which have also been proposed to form left-handed DNA. These non-B-DNA conformations may represent novel left-handed helical structures or sequences that become single stranded under torsional strain. Long regions of either altered (unmethylatable) DNA or B-DNA were not always observed. In fact, one region showed three transitions between B-like DNA and altered structure within 26 base-pairs.  相似文献   

2.
3.
The Zab domain of the editing enzyme ADAR1 binds tightly and specifically to Z-DNA stabilized by bromination or supercoiling. A stoichiometric amount of protein has been shown to convert a substrate of suitable sequence to the Z form, as demonstrated by a characteristic change in the CD spectrum of the DNA. Now we show that Zab can bind not only to isolated Z-forming d(CG)(n) sequences but also to d(CG)(n) embedded in B-DNA. The binding of Zab to such sequences results in a complex including Z-DNA, B-DNA, and two B-Z junctions. In this complex, the d(CG)(n) sequence, but not the flanking region, is in the Z conformation. The presence of Z-DNA was detected by cleavage with a Z-DNA specific nuclease, by undermethylation using Z-DNA sensitive SssI methylase, and by circular dichroism. It is possible that Zab binds to B-DNA with low affinity and flips any favorable sequence into Z-DNA, resulting in a high affinity complex. Alternatively, Zab may capture Z-DNA that exists transiently in solution. The binding of Zab to potential as well as established Z-DNA segments suggests that the range of biological substrates might be wider than previously thought.  相似文献   

4.
The ability to clone a variety of sequences with varying capabilities of adopting non-B structures (left-handed Z-DNA, cruciforms or triplexes) into three loci of pBR322 was investigated. In general, the inserts were stable (non-deleted) in the EcoRI site (an untranslated region) of pBR322. However, sequences most likely to adopt left-handed Z-DNA or triplexes in vivo suffered deletions when cloned into the BamHI site, which is located in the tetracycline resistance structural gene (tet). Conversely, when the promoter for the tet gene was altered by filling-in the unique HindIII or ClaI sites, the inserts in the BamHI site were not deleted. Concomitantly, the negative linking differences of the plasmids were reduced. Also, inserts with a high potential to adopt Z-DNA conformations were substantially deleted in the PvuII site of pBR322 (near the replication origin and the copy number control region), but were less deleted if the tet promoter was insertion-mutated. The deletion phenomena are due to the capacity of these sequences to adopt left-handed Z-DNA or triplexes in vivo since shorter inserts, less prone to form non-B DNA structures, or random sequences, did not exhibit this behavior. Sequences with the potential to adopt cruciforms were stable in all sites under all conditions. These results reveal a complex interrelationship between insert deletions (apparently the result of genetic recombination), negative supercoiling, and the formation of non-B DNA structures in living Escherichia coli cells.  相似文献   

5.
The recent electronmicroscopic and biochemical mapping of Z-DNA sites in phi X174, SV40, pBR322 and PM2 DNAs has been used to determine two sets of criteria for identification of potential Z-DNA sequences in natural DNA genomes. The prediction of potential Z-DNA tracts and corresponding statistical analysis of their occurrence have been made on a sample of 14 DNA genomes. Alternating purine and pyrimidine tracts longer than 5 base pairs in length and their clusters (quasi alternating fragments) in the 14 genomes studied are under-represented compared to the expectation from corresponding random sequences. The fragments [d(G X C)]n and [d(C X G)]n (n greater than or equal to 3) in general do not occur in circular DNA genomes and are under-represented in the linear DNAs of phages lambda and T7, whereas in linear genomes of adenoviruses they are strongly over-represented. With minor exceptions, potential Z-DNA sites are also under-represented compared to random sequences. In the 14 genomes studied, predicted Z-DNA tracts occur in non-coding as well as in protein coding regions. The predicted Z-DNA sites in phi X174, SV40, pBR322 and PM2 correspond well with those mapped experimentally. A complete listing together with a compact graphical representation of alternating purine-pyrimidine fragments and their Z-forming potential are presented.  相似文献   

6.
R R Sinden  T J Kochel 《Biochemistry》1987,26(5):1343-1350
Z-DNA-forming sequences, (GT)21, (GT)12ATGT, and (CG)6TA(CG)6, were cloned into plasmids. These sequences formed left-handed Z-DNA conformations under torsional tension from negative supercoiling of DNA. 4,5',8-Trimethylpsoralen, on absorption of 360-nm light, forms monoadducts and interstrand cross-links in DNA that exists in the B-helical conformation. Trimethylpsoralen cross-links were introduced into the potential Z-DNA-forming sequences in relaxed DNA when these sequences existed as B-form DNA. In supercoiled DNA when these sequences existed in the Z conformation, the rate of cross-linking was greatly reduced, and trimethylpsoralen did not form monoadducts appreciably to Z-DNA. As an internal control in these experiments, the rates of cross-linking of the Z-DNA-forming sequences were measured relative to that of an adjacent, cloned sequence that could not adopt a Z conformation. The initial relative rates of cross-linking to Z-DNA-forming sequences were dependent on the superhelical density of the DNA, and the rates were ultimately reduced by factors of 10-15 for Z-DNA in highly supercoiled plasmids. This differential rate of cross-linking provides a novel assay for Z-DNA. Initial application of this assay in vivo suggests that a substantial fraction of (CG)6TA(CG)6, which existed as Z-DNA in plasmid molecules purified from cells, existed in the B conformation in vivo.  相似文献   

7.
Alternating repeated d(CA.GT)n and d(CG.GC)n sequences constitute a significant proportion of the simple repeating elements found in eukaryotic genomic DNA. These sequences are known to form left-handed Z-DNA in vitro. In this paper, we have addressed the question of the in vivo determination of the Z-DNA-forming potential of such sequences in eukaryotic chromatin. For this purpose, we have investigated the ability of a d(CA.GT)30 sequence and a d(CG.GC)5 sequence to form left-handed Z-DNA when cloned into simian virus 40 (SV40) minichromosomes at two different positions: the TaqI site, which occurs in the intron of the T-antigen gene, and the HpaII site, which is located in the late promoter region within the SV40 control region. Formation of Z-DNA at the inserted repeated sequences was analyzed through the change in DNA linkage associated with the B to Z transition. Our results indicate that regardless of: (1) the site of insertion (either TaqI or HpaII), (2) the precise moment of the viral lytic cycle (from 12 h to 48 h postinfection) and (3) the condition of incorporation of the SV40 recombinants to the host cells (either as minichromosomes or as naked DNA, relaxed or negatively supercoiled), neither the d(CA.GT)30 nor the d(CG.GC)5 sequence are stable in the left-handed Z-DNA conformation in the SV40 minichromosome. The biological relevance of these results is discussed.  相似文献   

8.
Nucleosome-cores were reconstituted by the salt-dialysis method onto closed circular pDHg16 DNA which contains a d(CG/GC)12 sequence. Alternating d(CG/GC)n sequences form left-handed Z-DNA readily when contained in negatively supercoiled DNA. We have investigated the ability of the d(CG/GC)12 sequence to be organized into nucleosome-cores when stabilized as Z-DNA through negative supercoiling. We have found that nucleosome assembly at the d(CG/GC)12 insert is prevented when the sequence is stable in the Z-conformation but it is not affected at all when the sequence adopts the right-handed B-form.  相似文献   

9.
Z-DNA, the left-handed conformer of DNA, is stabilized by the negative supercoiling generated during the movement of an RNA polymerase through a gene. Recently, we have shown that the editing enzyme ADAR1 (double-stranded RNA adenosine deaminase, type 1) has two Z-DNA binding motifs, Zalpha and Zbeta, the function of which is currently unknown. Here we show that a peptide containing the Zalpha motif binds with high affinity to Z-DNA as a dimer, that the binding site is no larger than 6 bp and that the Zalpha domain can flip a range of sequences, including d(TA)3, into the Z-DNAconformation. Evidence is also presented to show that Zalpha and Zbeta interact to form a functional DNA binding site. Studies with atomic force microscopy reveal that binding of Zalpha to supercoiled plasmids is associated with relaxation of the plasmid. Pronounced kinking of DNA is observed, and appears to be induced by binding of Zalpha. The results reported here support a model where the Z-DNA binding motifs target ADAR1 to regions of negative supercoiling in actively transcribing genes. In this situation, binding by Zalpha would be dependent upon the local level of negative superhelicity rather than the presence of any particular sequence.  相似文献   

10.
Isolation and characterization of Z-DNA binding proteins from wheat germ   总被引:11,自引:0,他引:11  
E M Lafer  R Sousa  B Rosen  A Hsu  A Rich 《Biochemistry》1985,24(19):5070-5076
The preparation of a heterogeneous non-histone protein extract from wheat germ utilizing Br-poly(dG-dC).poly(dG-dC) (Z-DNA) affinity chromatography is described. The binding characteristics of antibodies against Z-DNA are used as a model system to define important criteria that the DNA binding behavior of a Z-DNA binding protein should display. We show that the wheat germ extract contains DNA binding proteins specific for left-handed Z-DNA by these criteria. The affinity of the proteins measured by competition experiments was approximately 10(5) greater for Br-poly(dG-dC).poly(dG-dC) (Z-DNA) than for poly(dG-dC).poly(dG-dC) (B-DNA). The affinity of the proteins for plasmid DNA increases with increasing negative superhelicity which is known to stabilize Z-DNA. The proteins are shown to compete with Z-DNA antibodies for binding to supercoiled plasmids. Finally, the affinity for two plasmids at a given superhelical density is greater for the plasmid containing an insert known to form Z-DNA than for a plasmid without the insert. The proteins exhibit a 2-3-fold greater affinity for stretches of (dC-dA)n.(dT-dG)n over stretches of (dG-dC)n.(dG-dC)n when both sequences are induced to form Z-DNA by supercoiling.  相似文献   

11.
Abstract

An analysis of the B-to-Z transition as a function of supercoiling for a natural Z-DNA- forming sequence found in plasmid pBR322 is presented at nucleotide resolution. The analysis is based on reactivity to four chemical probes which exhibit hyperreactivity in the presence of Z-DNA: hydroxylamine, osmium tetroxide, diethyl pyrocarbonate and dimethyl sulfate. We find that the initial transition occurs largely within a 14 base pair region which is mostly alternating purines and pyrimidines. With increasing negative supercoiling, Z-DNA extends into flanking regions having less and less alternating character, first in one direction and then in the other. Evidence of B-Z junctions is seen at four sites bracketing these three adjacent regions. One of these Z-forming regions contains the non-alternating sequence CTCCT, suggesting that such sequences can form Z-DNA without great difficulty if they are adjacent to alternating sequences. A plasmid containing three copies of a 61 base pair fragment bearing the entire Z-forming region shows equal reactivity of all three copies at any given superhelical density, implying that they compete equally and independently for the torsional strain energy which promotes the B-Z transition, and are unaffected by adjacent sequences more than 20–30 base pairs away.  相似文献   

12.
Tracts of the alternating dinucleotide polydeoxythymidylic-guanylic [d(TG)].polydeoxyadenylic-cytidylic acid [d(AC)], present throughout the human genome, are capable of readily forming left-handed Z-DNA in vitro. We have analyzed the effects of the Z-DNA motif d(TG)30 upon homologous recombination between two nonreplicating plasmid substrates cotransfected into human cells in culture. In this study, the sequence d(TG)30 is shown to stimulate homologous recombination up to 20-fold. Enhancement is specific to the Z-DNA motif; a control DNA fragment of similar size does not alter the recombination frequency. The stimulation of recombination is observed at a distance (237 to 1,269 base pairs away from the Z-DNA motif) and involves both gene conversion and reciprocal exchange events. Maximum stimulation is observed when the sequence is present in both substrates, but it is capable of stimulating when present in only one substrate. Analysis of recombination products indicates that the Z-DNA motif increases the frequency and alters the distribution of multiple, unselected recombination events. Specifically designed crosses indicate that the substrate containing the Z-DNA motif preferentially acts as the recipient of genetic information during gene conversion events. Models describing how left-handed Z-DNA sequences might promote the initiation of homologous recombination are presented.  相似文献   

13.
Left-handed Z-DNA binding by the recA protein of Escherichia coli   总被引:10,自引:0,他引:10  
recA binding to left-handed Z-DNA was measured using nitrocellulose filter binding assays with four DNA polymers with defined nucleotide sequences and four recombinant plasmids. Two to 7-fold preferential binding of recA to Z-DNA polymers was observed. Left-handed Z-DNA polymer binding by recA required ATP or its nonhydrolyzable analog, ATP(gamma S), while ADP inhibited binding. Complex formation with both B- and Z-forms was influenced by polymer length; recA bound longer DNAs better. recA binding to recombinant plasmids containing supercoil-stabilized Z-DNA was essentially similar to that found for the control vector; thus, no preferential binding of recA to the Z-form was observed. Comparative experiments with the rec1 protein of Ustilago maydis and the Escherichia coli recA protein were performed. In our hands, recA and rec1 have a similar capacity for binding left-handed Z-DNA polymers and for binding recombinant plasmids containing B- and/or Z-regions. recA contains a left-handed Z-DNA-stimulated ATPase activity. This activity differs from the right-handed B-DNA-stimulated activity since it is less sensitive to increasing pH. The kinetics of ATP hydrolysis in B-DNA/Z-DNA mixing experiments showed that the turnover of the Z-DNA recA complex was slower than for B-DNA suggesting that left-handed Z-DNA is more stably bound by recA. Our results are consistent with the postulate that left-handed Z-DNA is involved in genetic recombination.  相似文献   

14.
We present a theory for cooperative chiral order in the transition between right-handed B-DNA and left-handed Z-DNA. This theory, based on the random-field Ising model, predicts the characteristic length scale of Z-DNA segments. This length scale depends on whether the DNA is a homopolymer or a random sequence: it is approximately 4000 nucleotides in a homopolymer but only approximately 25 nucleotides in a random sequence. These theoretical results are consistent with experiments on DNA homopolymers and random sequences.  相似文献   

15.
16.
The formation of melted regions from A + T-rich sequences and left-handed Z-DNA by alternating purine-pyrimidine sequences will both be facilitated by negative supercoiling, and thus if the sequences are present within the same plasmid molecule they will compete for the free energy of supercoiling. We have studied a series of plasmids that contain either (CG)8 or (TG)12 sequences in either G + C or A + T-rich contexts, by means of two-dimensional gel electrophoresis and chemical modification. We observe both B-Z and helix-coil transitions in all plasmids at elevated temperatures and low ionic strength. The plasmids fall into a number of different classes, in terms of the conformational behavior. As the superhelix density is increased, pCG8/vec ((CG)8 in G + C-rich context) undergoes an initial B-Z transition, followed by melting transitions in sequences remote from the (CG)8 sequence. The two transitions are coupled through the topology of the molecule but are otherwise independent. When the (CG)8 sequence was placed in an A + T-rich context (pCG8/col), the helix-coil transition was perturbed by the presence of the Z-DNA segment. Replacement of the (CG)8 tracts by (TG)12 sequences resulted in a further level of interaction between the transitions. Statistical mechanical modeling of the transitions suggested that at intermediate levels of negative supercoiling the Z-DNA formed by the (TG)12 sequence has a lowered probability due to the helix-coil transition in the A + T-rich sequences. These studies illustrate the complexities of competing conformational equilibria in supercoiled DNA molecules.  相似文献   

17.
18.
E M Lafer  R Sousa    A Rich 《The EMBO journal》1985,4(13B):3655-3660
It is shown that anti-Z-DNA antibody binding can stabilize sequences of d(CG/GC)n and d(CA/GT)n in the Z-DNA conformation in a plasmid in the complete absence of supercoiling. This effect is quantitated by using antibody preparations of different affinities and varying concentrations. The d(CG/GC)n sequence can be stabilized under physiological conditions. This is the first demonstration that a region of Z-DNA can be stabilized by protein binding in a completely relaxed plasmid under physiological conditions. The antibody-Z-DNA complex in the relaxed plasmid is shown to be an equilibrium state and not a long-lived kinetic intermediate since specific binding of the antibody to linearized plasmids containing Z-forming sequences is observed.  相似文献   

19.
20.
Wang G  Vasquez KM 《Mutation research》2006,598(1-2):103-119
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号