首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Developmental physiology of floral initiation in Nicotiana tabacum L.   总被引:4,自引:0,他引:4  
The central process in the making of a multicellular organismis the fating of cells and tissues for their terminal phenotypes.The formation of a flower from a shoot apical meristem completesa sequence of fating processes initiated in embryogenesis. Thefating of a vegetative meristem of Nicotiana tabacum L. to initiatea flower involves at least two signals and two developmentalstates. A signal from the roots maintains vegetative growth,or prevents flowering, in the young seedling. As the plant grows,the vegetative meristem gains greater competence to respondto the floral stimulus from the leaves until it is evoked, byfloral stimulus, into a florally determined state. The florallydetermined state is then expressed. These developmental processesnot only establish the time of floral initiation, but also regulateplant size as measured by the number of nodes produced. Key words: Plant size, floral stimulus, competence, floral determination, induction  相似文献   

2.
Flowering of Chenopodium rubrum seedling plants was obtained in continuous light after application of fractions of a partially purified extract from leaves of flowering Maryland Mammoth tobacco (Nicotiana tabacum). The stage of flowal differentiation was dependent on the age of the Chenopodium plants used for the bioassay. Apices of plants treated with the extract at the age of four or seven days showed an advanced branching of the meristem or the beginning of formation of a terminal flower; treatment with the extract of plants 12 d old resulted in rapid formation of flower buds in all assay plants. Non-treated control plants kept in continuous light remained fully vegetative. The effects of the extract on flowering were associated with pronounced growth effects. Floral differentiation was preceeded by elongation of the shoot apex. Extension of all axial organs occurred, while growth of leaves, including leaf primordia, was inhibited. The pattern of growth after application of the flower-inducing substance(s) did not resemble the effects of the known phytohormones, but showed some similarities to growth changes resulting from photoperiodic induction of flowering.  相似文献   

3.
Terminal meristems of Pisum sativum (garden pea) transit from vegetative to inflorescence development, and begin producing floral axillary meristems. Determination for inflorescence development was assessed by culturing excised buds and meristems. The first node of floral initiation (NFI) for bud expiants developing in culture and for adventitious shoots forming on cultured meristems was compared with the NFI of intact control buds. When terminal buds having eight leaf primordia were excised from plants of different ages (i.e., number of unfolded leaves) and cultured on 6-benzylaminopurine and kinetin-supplemented medium, the NFI was a function of the age of the source plant. By age 3, all terminal buds were determined for inflorescence development. Determination occurred at least eight nodes before the first axillary flower was initiated. Thus, the axillary meristems contributing to the inflorescence had not formed at the time the bud was explanted. Similar results were obtained for cultured axillary buds. In addition, meristems excised without leaf primordia from axillary buds three nodes above the cotyledons of age-3 plants gave rise to adventitious buds with an NFI of 8.3 ±0.3 nodes. In contrast seed-derived plants had an NFI of 16.5 ±0.2. Thus cells within the meristem were determined for inflorescence development. These findings indicate that determination for inflorescence development in P. sativum is a stable developmental state, separable from determination for flower development, and occurring prior to initiation of the inflorescence at the level of meristems.  相似文献   

4.
Vegetative plants of Sinapis alba L. grown under short days were induced to flower by exposure to one long day or continuous long days. Irrespective of the number of long days, the first flower primordia were initiated by the shoot apical meristem 60 h after the start of the inductive treatment. An indirect histoimmunofluorescence technique was used to search in the apical meristem for three antigenic proteins which had been previously detected by immunodiffusion tests in the whole apical bud (Pierard et al. (1977) Physiol. Plant. 41, 254–258). One protein called protein A, present in the vegetative meristem, increased in concentration during the first 48 h following the start of the inductive treatment. It stayed constant up to 96 h and disappeared completely at a later time. Two other proteins called B and C, absent in the vegetative meristem, appeared in the meristem of induced plants between 30 and 36 h after the start of the inductive treatment and progressively accumulated at later times up to 240 h. These proteins appeared 8 h before the irreversible commitment of the meristem to produce flower primordia (point of no return) was reached and 24 h before start of flower production. These observations support an interpretation of floral evocation as consisting, at least partially, of an early and qualitative change in gene expression.Abbreviations AVB anti-vegetative-bud antiserum - ARB antireproductive-bud antiserum - IgG immunoglobulins G - TRITC tetramethylrhodamine isothiocyanate - GAR IgG goat antirabbit IgG - S0 IgG non-immune rabbit IgG  相似文献   

5.
Employing genotypes of day-neutral tobacco that exhibit a wide range in the number of nodes produced, it has been established that node number, and plant size, in tobacco is regulated, in large part, by two endogenous signals and one developmental state, competence. All genotypes have the same level of a root signal that maintains a vegetative pattern during early growth. The number of nodes produced before the formation of the terminal flower, as well as plant size, is a function of the strength of the floral stimulus from the leaves and the competence of the terminal meristem to respond to the floral stimulus by initiating the terminal flower.  相似文献   

6.
The interaction between roots and leaves as a function of the capacity of differently positioned leaves to induce flowering of four cultivars of Nicotiana tabacum L. was assessed under long-and short-day growth conditions with three types of manipulations: 1) repeated rooting of the shoot tip, 2) removal of apical leaves, and 3) removal of basal leaves. Repeated rooting of the shoot tip increased the number of nodes produced by all cultivars; however, a substantial extension of vegetative growth was only caused by rerooting in conditions where apical leaves exhibited little or no inductive capacity. The simplest and most consistent interpretation of these data is that floral initiation in tobacco results from an interaction of inputs from the leaves and the roots and that the root influence can be overridden by a strong leaf signal.  相似文献   

7.
Inhibition of flowering of cucumber grafted on rooted squash stock   总被引:1,自引:0,他引:1  
For the elucidation of the mechanisms of floral transition in indifferent plants, cucumber seedlings ( Cucumis sativus cv. Rennsei or cv. Shimoshirazu-jibai) were grafted onto squash seedlings ( Cucurbita maxima Duchesne X C. moschata Duchesne cv. Shintosa-ichigou) of which the meristems had been removed, and the effect on flower induction on the cucumber scion was examined. In both cultivars, the grafted cucumber bore no flowers, whereas control plants developed flowers above the second to fourth nodes. The inhibition of flower formation on the grafted cucumber scion occurred even when the root of cucumber was left with the squash root on the grafted plant, and flower formation occurred after removal of the squash stock. The inhibitory effect of the squash stock in the presence of the cucumber root was abolished by removal of the squash root. Neither the dry weight of stem plus leaf nor the chlorophyll content of the leaf, as indicators of vegetative growth, were correlated with flower formation on cucumber plants that had been grafted in the presence of cucumber roots on whole, cotyledon-free or root-free squash stock. These results indicate that flower formation in cucumber was inhibited by a factor produced by squash roots, an inhibition probably not involved in the modulation of vegetative growth. The root may control floral transition by the production of inhibitory factors in some day-neutral Cucurbitaceae plants.  相似文献   

8.
Sim GE  Loh CS  Goh CJ 《Plant cell reports》2007,26(4):383-393
We have successfully developed a method to induce early in vitro flowering of the self-pollinated seedlings of a tropical orchid hybrid, Dendrobium Madame Thong-In. Transition of vegetative shoot apical meristem to inflorescence meristem was observed when young protocorms were cultured in modified KC liquid medium. In contrast, protocorms cultured on Gelrite-solidified medium only produced axillary shoots and roots. CW was required to trigger the transitional shoot apical meristem and BA enhanced inflorescence stalk initiation and flower bud formation. However, normal flower development was deformed in liquid medium but developed fully upon transferring to two-layered (liquid over Gelrite-solidified) medium. Under optimal condition, in vitro flowering was observed about 5 months after seed sowing. Segregation of flower colours was observed in these seedlings and seedpods formed upon artificial pollination of the in vitro flowers.  相似文献   

9.
10.
Floral determination in the terminal bud of the short-day plant Nicotiana tabacum cv. Maryland Mammoth has been investigated. Plants grown continuously in short days flowered after producing 31.4±1.6 (SD) nodes while plants grown continuously in long days did not flower and produced 172.5±9.5 nodes after one year. At various ages, expressed as number of leaves that were at least 1.0 cm in length above the most basal 10-cm leaf, one of three treatments was performed on plants grown from seed in short days: 1) whole plants were shifted from short days to long days, 2) the terminal bud was removed and then rooted and grown in long days, and 3) the terminal bud was removed and then rooted and grown in short days. Whole plants flowered only when shifted from short days to long days at age 15 or later. Only rooted terminal buds from plants at age 15 or older produced plants that flowered when grown in long days. Only terminal buds from plants at age 15 or older that were rooted and grown in short days produced the same number of nodes as they would have produced in their original locations while buds from younger plants produced more nodes than they would have in their original locations. Thus, determination for floral development in the terminal bud, as assayed by rooting, is simultaneous with the commitment to flowering as assayed by shifting whole plants to non-inductive conditions.Abbreviations LD long day(s) - SD short day(s) - DN dayneutral  相似文献   

11.
Ke-Bin Liu  Shu-Xuan Li 《Planta》1989,180(1):131-133
Leaf explants of 24 cultivars and 2 F1 hybrids of the common tomato (Lycopersicon esculentum Mill.) and ofL. pimpinellifolium Brezh. were cultured on Murashige-Skoog medium containing different concentrations of NaCl. The cultures of 11 genotypes formed flower buds when cultured on medium containing 0.5% NaCl. Flower formation occurred either by direct differentiation from the leaf cultures or by transition of the apices of regenerated shoots from the vegetative state to floral buds. No flower formation occurred on medium without NaCl or media with 1.0% NaCl or more. There existed great differences in the capacity of in-vitro flower formation in the tomato leaf explants among the genotypes tested. The genotypes whose explants did form flowers were all of determinate growth habit.  相似文献   

12.
In a determinate meristem, such as a floral meristem, a genetically determined number of organs are produced before the meristem is terminated. In rice, iterative formation of organs during flower development with defects in meristem determinacy, classically called ‘proliferation’, is caused by several mutations and observed in dependence on environmental conditions. Here we report that overexpression of several JAZ proteins, key factors in jasmonate signaling, with mutations in the Jas domains causes an increase in the numbers of organs in florets, aberrant patterns of organ formation and repetitious organ production in spikelets. Our results imply that JAZ factors modulate mechanisms that regulate meristem functions during spikelet development.  相似文献   

13.
A mature, quiescent, primary axillary bud on the main axis of a flowering Nicotiana tabacum cv. Wisconsin 38 plant, when released from apical dominance and before forming its terminal flower, produced a number of nodes which was dependent upon its position on the main axis. Each bud produced about one more node than the next bud above it. The total number of nodes produced by an axillary bud was about 6 to 8 greater than the number of nodes present above this bud on the main axis. At anthesis of the terminal flower on the main axis, mature, quiescent, primary axillary buds had initiated 7 to 9 leaf primordia while secondary axillary buds, sometimes present in addition to the primary ones, had initiated 4 to 5 leaf primordia. When permitted to grow out independently, primary and secondary axillary buds located at the same node on the main axis produced the same number of nodes before forming their terminal flowers. In contrast, immature primary axillary buds which had produced only 5 leaf primordia and which were released from apical dominance prior to the formation of flowers on the main axis produced only as many nodes as would be produced above them on the main axis by the terminal meristem, i.e., “extra” nodes were not produced. Therefore, it is the physiological status of the plant and not the number of nodes on the bud at the time of release from apical dominance that influenced the node-counting process of a bud. When two axillary buds were permitted to develop on the same main axis, each produced the same number of nodes as single axillary buds developing at these nodes. Thus, the counting process in an axillary bud of tobacco is independent of other buds. Axillary buds on main axes of plants that had been placed horizontally produced the same number of nodes as identically-positioned axillary buds on vertical plants, indicating that gravity does not play a major role in the counting, by an axillary bud, of the nodes on the main axis.  相似文献   

14.
A fate map for the shoot apical meristem of Zea mays L. at the time of germination was constructed by examining somatic sectors (clones) induced by -rays. The shoot apical meristem produced stem, leaves, and reproductive structures above leaf 6 after germination and the analysis here concerns their formation. On 160 adult plants which had produced 17 or 18 leaves, 277 anthocyanin-deficient sectors were scored for size and position. Sectors found on the ear shoot or in the tassel most often extended into the vegetative part of the plant. Sectors ranged from one to six internodes in length and some sectors of more than one internode were observed at all positions on the plant. Single-internode sectors predominated in the basal internodes (7,8,9) while longer sectors were common in the middle and upper internodes. The apparent number of cells which gave rise to a particular internode was variable and sectors were not restricted to the lineage unit: a leaf, the internode below it, and the axillary bud and prophyll at the base of the internode. These observations established two major features of meristem activity: 1) at the time of germination the developmental fate of any cell or group of cells was not fixed, and 2) at the time of germination cells at the same location in a meristem could produce greatly different amounts of tissue in the adult plant. Consequently, the developmental fate of specific cells in the germinating meristem could only be assigned in a general way.Abbreviations ACN apparent cell number - LI, LII, LI-LII sectors restricted to the epidermis, the subepidermis, or encompassing epidermis and subepidermis - PCN progenitor cell  相似文献   

15.
Axillary meristems of short day plantChenopodium rubrum are localized as caulinar, foliar or axillar. The localization of axillary meristems and axillary buds of 14 day old plants varied in similar pattern as in other plant species so far investigated: after several nodes with foliar axillary meristems the caulinar ones were produced. However, unlike in other species, in C.rubrum a very high percentage of caulinar meristem is produced also on the first node. In this case, like in the case of its later differentiation at higher nodes, the formation of caulinar meristem is confined also to the vegetative state. It was found that the caulinary position coincides with higher responsiveness to photoperiodic induction. The developmental significance of such behaviour is discussed.  相似文献   

16.
Short-term applications of very high concentrations of 1-naphthaleneacetic acid (NAA) to expiants from flower stalks of tobacco (Nicotiana tabacum L. cv. Samsun) induced flower-bud regeneration to the same extent as longer or continuous incubation on lower concentrations. The maximum number of flower buds per explant after 15 d of culture was obtained not only by continuous culturing at 1 mol·l–1 NAA but also by 12 h of culturing at 22 mol·l–1 or 0.5 h at 220 mol· l–1, followed by incubation on medium without auxin for the remaining period. Continuous application of such high concentrations resulted in callus formation or caused the death of the explanted tissue. In all experiments in which auxin concentration and time of application were independently varied, the product of concentration and time determined the number of buds formed. Most, but not all, of the NAA taken up by the tissues was converted into conjugates. In expiants which had received a dose which was optimal for regeneration, the internal concentration of free NAA remaining beyond the pulse period was between 1.7 and 6.2 mol·l–1. Suboptimal applications led to lower values, supraoptimal treatments to much higher internal concentrations. The physiological effect, which depends on the internal hormone concentration, thus manifested itself as dose-dependent with regard to applied hormone.Abbreviations BAP N6-benzylaminopurine - NAA 1-naphthaleneacetic acid  相似文献   

17.
The abscission zone in tomato (Lycopersicon esculentum (L.) Mill. flower pedicels is morphologically distinguishable prior to separation and is delineated by an indentation of the epidermis. Exposure of excised pedicels with the flower attached to ethylene results in abscission within 12 h and this can be accelerated by flower removal. Abscission of excised pedicels with the flower removed takes place in the absence of exogenous ethylene but this is delayed by pretreatment with aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. The data presented support the hypothesis that flower tissue is the source of an abscission inhibitor.Abbreviations AVG aminoethoxyvinyl glycine - IAA indole-3-acetic acid  相似文献   

18.
Summary In order to analyze expression of the maize alcohol dehydrogenase 1 gene (Adh1), its promoter was fused with the gusA reporter gene and introduced into rice by protoplast transformation. Histochemical analysis of transgenic plants and their progeny showed that the maize Adh1 promoter is constitutively expressed in root caps, anthers, anther filaments, pollen, scutellum, endosperm and shoot and root meristem of the embryo. Induction of expression by the Adh1 promoter was examined using seedlings derived from selfed progeny of the transgenic plants. The results showed that expression of the Adh1 promoter was strongly induced (up to 81-fold) in roots of seedlings after 24 h of anaerobic treatment, concomitant with an increase in the level of gusA mRNA. 2,4-D also induced Adh1 promoter-directed expression of gusA to a similar extent. In contrast, little induction by anaerobic treatment was detected in transformed calli, leaves or roots of primary transformants or shoots of seedlings. A detailed examination of seedling roots during anaerobic treatment revealed that the induction started first at the meristem and after 3 h there was strong induction in the elongation zone which is located 1–2 mm above the meristem; the induction then progressed upward from this region. Our results suggest that transgenic rice plants carring the gusA reporter gene fused with promoters are useful for the study of anaerobic regulation of genes derived from graminaceous species.  相似文献   

19.
Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscopy.  相似文献   

20.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号