首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
随着全球人口增长,世界范围内野地-城市交界域(WUI)正在加速扩张。美国的WUI面积大、分布广、聚集人口多,由于交界域直接与森林植被相贯通,极易受到林火影响,区域范围内人类生命财产安全面临巨大威胁。经过长期的火灾管理实践,美国形成了一套较为完善的WUI林火预防、扑救管理体系。本文从美国WUI的形成方式、火灾发生情况、预防扑救措施等几方面系统总结了美国WUI火灾的管理体系。此外,本文分析了我国WUI火灾管理的现状及存在问题,并基于美国经验提出了完善我国WUI火灾管理的六点建议:(1)制定交界域消防管理计划;(2)合理利用计划火烧;(3)研发火灾预警系统;(4)增强社区防火能力;(5)提高消防员灭火水平;(6)完善火灾扑救策略。  相似文献   

2.
火在生态系统中的作用   总被引:3,自引:0,他引:3  
《生态学杂志》1992,11(1):41-47
前言火对植被的影响是在近十多年来才被完全确认的。在二十世纪的大部分时间内,火常常被认为是破坏生态系统的非自然因子;然而,植被学家、人类学家、地理学家和其他许多学者都认为北美的土族印地安人和其他许多民族曾广泛地利用火作为土地管理的工具(Van-  相似文献   

3.
不同植被类型森林火灾及雷击火自组织临界性   总被引:4,自引:0,他引:4  
利用黑龙江省大兴安岭林区呼中区 196 5~ 2 0 0 2年的雷击火数据、黑龙江省 1981~ 2 0 0 0年森林火灾数据及森林资源数据 ,对雷击造成的森林火灾的自组织临界性及不同植被类型条件下的自组织临界性作了研究 ,比较了在不同尺度和植被类型条件下火干扰的自组织临界性、自相似性 ,并与传统的森林火灾元胞自动机模型模拟的结果进行比较。结果表明 :中国黑龙江省不同森林类型的火干扰具有自组织临界行为 ,森林可燃物已经达到临界状态 ,其临界值在 1.8~ 2 .86之间 ,具有自相似性 ;当森林的面积过小时 ,森林火灾的“面积 -频率”分布曲线上会出现频率峰 ,表现出“有限面积效应”现象。  相似文献   

4.
Bowman et al. (Journal of Biogeography, 2011, 38 , 2223–2236) attempt a synthesis of the current status of study into human use of fire as an ecosystem management tool and provide a framework for guiding research on the human dimensions of global fire. While we applaud this ambitious effort, we believe the proposed ‘pyric phase and transition’ model to be too deterministic and simplistic to account for the complexity and diversity in human–fire relationships. After reviewing theoretical problems with the proposed framework, we question policy implications of their conclusions concerning tropical forest systems. We suggest that a theoretically informed perspective should build on an historical fire ecology framework for investigating social and ecological aspects of human–environment interactions.  相似文献   

5.
Fire, being both a natural and cultural phenomenon, presents problems in disentangling the historical effect of humans from that of climate change. Here, we investigate the potential impact of humans on boreal fire regimes from a perspective of fuels, ignitions and culture. Two ways for a low technology culture to impact the fire regime are as follows: (i) by altering the number of ignitions and their spatial distribution and timing and (ii) by hindering fire spread. Different cultures should be expected to have quite different impacts on the fire regimes. In northern Fennoscandia, there is evidence for fire regime changes associated with the following: a reindeer herding culture associated with few ignitions above the natural; an era of cattle husbandry with dramatically increased ignitions and somewhat higher fire frequency; and a timber exploitation era with decreasing fire sizes and diminishing fire frequency. In other regions of the boreal zone, such schemes can look quite different, but we suggest that a close look at the resource extraction and land use of different cultures should be part of any analysis of past fire regimes.  相似文献   

6.
7.
This study shows how high‐resolution (~15 cm) simultaneous colour and infra‐red digital aerial photography can be used to map both fire severity and, particularly, fire extent, in forest in south‐eastern Australia. The results show that this methodology is capable of detecting and mapping burnt and unburnt edges under unaffected forest canopy (i.e. still green) – that is, revealing the mosaic of burnt and unburnt areas that often result from planned landscape burning under mild weather conditions (i.e. with little of the brownish canopy scorch that results from more intense bushfires). This has important implications for both fuel management and ecology. It can answer the basic questions of fire and biodiversity managers following planned burning –’how much of the planned area burnt, and, within the burnt area, what aspects were burnt, and how hot did they burn?’ The analysis of fire extent by aspect showed that about 80% of southern and eastern aspects remained unburnt during broadscale autumn prescribed burning, with many of these moister aspects potentially providing longer unburnt refuges over multiple burn rotations. The fire severity and extent mapping products, produced using the methodology outlined in this study, have the potential to substantially increase the understanding of the ecological and fuel outcomes of landscape‐scale autumn prescribed burning.  相似文献   

8.
Juli G. Pausas 《Oikos》2019,128(2):147-153
Despite the existing large body of research on plant–animal interactions, plant research and animal research are still relatively independent and asymmetrical in relation to disturbance. Animals and plants are likely to have different fire responses, yet biodiversity studies in relation to disturbance may benefit from a more integrated functional approach across kingdoms. This would also force us to go deeper into the biological mechanisms and scales for persistence than a taxonomic‐based classification. An integrated view of plant and animal responses would enable us to learn from a great variety of life forms and benefit from expertise in complementary disciplines. To achieve this integrated view, I propose a functional classification for both plants and animals in relation to their fire response strategy. This classification includes the following strategies: resistance, refugia, avoidance, dormancy, recolonization, crypsis and intolerance. Given the limited knowledge of fire responses for many organisms, and especially for many animals, this classification may require further development. However, it provides a framework that facilitates finding knowledge gaps and directing future research for gaining a better understanding of the role of fire on biodiversity.  相似文献   

9.
Area burned has decreased across Europe in recent decades. This trend may, however, reverse under ongoing climate change, particularly in areas not limited by fuel availability (i.e. temperate and boreal forests). Investigating a novel remote sensing dataset of 64,448 fire events that occurred across Europe between 1986 and 2020, we find a power-law relationship between maximum fire size and area burned, indicating that large fires contribute disproportionally to fire activity in Europe. We further show a robust positive correlation between summer vapor pressure deficit and both maximum fire size (R2 = .19) and maximum burn severity (R2 = .12). Europe's fire regimes are thus highly sensitive to changes in future climate, with the probability for extreme fires more than doubling by the end of the century. Our results suggest that climate change will challenge current fire management approaches and could undermine the ability of Europe's forests to provide ecosystem services to society.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号