首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection, retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precursor into the cell body regions (L4 and L5 dorsal root ganglia) of the sciatic nerve. We now report the retrograde axonal transport of inositol phospholipids synthesized locally in the axons. Following microinjection of myo-[3H]inositol into the rat sciatic nerve (50-55 mm distal to L4 and L5 dorsal root ganglia), a time-dependent accumulation of 3H label occurred in the dorsal root ganglia ipsilateral to the injection site. The ratio of dpm present in the ipsilateral dorsal root ganglia to that in the contralateral dorsal root ganglia was not significantly different from unity between 2 and 8 h following isotope injection but increased to 10-12-fold between 24 and 72 h following precursor injection. By 24 h following precursor injection, the ipsilateral/contralateral ratio of the water-soluble label in the dorsal root ganglia still remained approximately 1.0, whereas the corresponding ratio in the chloroform/methanol-soluble fraction was approximately 20. The time course of appearance of labeled lipids in the ipsilateral dorsal root ganglia after injection of precursor into the nerve at various distances from the dorsal root ganglia indicated a transport rate of at least 5 mm/h. Accumulation of label in the dorsal root ganglia could be prevented by intraneural injection of colchicine or ligation of the sciatic nerve between the dorsal root ganglia and the isotope injection site. These results demonstrate that inositol phospholipids synthesized locally in the sciatic nerve are retrogradely transported back to the nerve cell bodies located in the dorsal root ganglia.  相似文献   

2.
Abstract: Axonal transport of phospholipids in normal and regenerating sciatic nerve of the rat was studied. At various intervals after axotomy of the right sciatic nerve in the midthigh region and subsequent perineurial sutures of the transected fascicles, a mixture of 60 μCi [Me-HC]choline and 15 μCi [2-3H]glycerol in the region of the spinal motor neurons of the L5 and L6 segments was injected bilaterally. The amount of radioactive lipid (and in certain cases its distribution in various lipid classes) along the nerve was determined as a function of time. Three days after fascicular suture and 6 h after spinal cord injection of precursors, there was an accumulation of labeled phospholipids and sphingolipids in the transected sciatic nerve in the region immediately proximal to the site of suture. Nine days after, there was a marked increase in the accumulation of radioactivity in the distal segments of the injured nerve, which increased up to 14 days after cutting and disappeared as regeneration proceeded (21–45 days). In all segments of both normal and regenerating nerve fibers, as well as in L5 and L6 spinal cord segments, only phosphatidylcholine and sphingomyelin were labeled with [14C]choline. These results suggest that the regeneration process in a distal segment of a peripheral neuron, following cutting and fascicular repairing by surgical sutures, is sustained in the first 3 weeks by changes in the amount of phospholipids rapidly transported along the axon towards the site of nerve fiber outgrowth.  相似文献   

3.
Abstract— Calcium is transported at a fast rate of 410 mm/day in cat sciatic nerve on injection of 45Ca2+ into the L7 dorsal root ganglia. Nerve segments corresponding to the crest and the plateau regions of transported activity were analyzed by column chromatography on Sephadex G-100 and Biogel A 5m columns and the fast transported 45Ca2+ found to be bound to a protein of 15,000 dalton. Using [3H]leucine as a precursor, a labeled calcium binding protein (CaBP) was found located at the same position in elution volumes from the columns as was the protein-bound 45Ca2 +. The level of [3H]-labeled CaBP in the crest and plateau regions were compared using column chromatography and polyacrylamide gel electrophoresis techniques and approx 3×4 times more [3H]-labeled activity was found in the crest as compared to the plateau. These findings indicate that Ca2+ is fast transported in association with the CaBP. The relation of CaBP to the transport filament model of axoplasmic transport and its possible role in nerve are discussed.  相似文献   

4.
Protein Synthesis and Axonal Transport During Nerve Regeneration   总被引:11,自引:10,他引:1  
Abstract— Protein synthesis and axonal transport have been studied in regenerating peripheral nerves. Sciatic nerves of bullfrogs were unilaterally crushed or cut. The animals were killed 1, 2, or 4 weeks later, and 8th and 9th dorsal root ganglia removed together with sciatic nerves and dorsal roots. The ganglia were selectively labeled in vitro with [35S]-methionine. Labeled proteins, in dorsal root ganglia and rapidly transported to ligatures placed on the sciatic nerves and dorsal roots, were analyzed by two-dimensional polyacryl-amide gel electrophoresis. Qualitative analysis of protein patterns revealed no totally new proteins synthesized or rapidly transported in regenerating nerves. However, quantitative comparison of regenerating and contralateral control nerves revealed significant differences in abundance for some of the proteins synthesized in dorsal root ganglia, and for a few of the rapidly transported proteins. Quantitative analysis of rapidly transported proteins in both the peripheral processes (spinal nerves) and central processes (dorsal roots) revealed similar changes despite the fact that the roots were undamaged. The overall lack of drastic changes seen in protein synthesis and transport suggests that the neuron in its program of normal maintenance synthesizes and supplies most of the materials required for axon regrowth.  相似文献   

5.
Abstract : Because cholecystokinin (CCK) acts as a "functional" endogenous opioid antagonist, it has been proposed that changes in central CCKergic neurotransmission might account for the relative resistance of neuropathic pain to the analgesic action of morphine. This hypothesis was addressed by measuring CCK-related parameters 2 weeks after unilateral sciatic nerve section in rats. As expected, significant decreases (-25-38%) in the tissue concentrations and in vitro release of both substance P and calcitonin gene-related peptide were noted in the dorsal quadrant of the lumbar spinal cord on the lesioned side. In contrast, the tissue levels and in vitro release of CCK were unchanged in the same area in lesioned rats. Measurements in dorsal root ganglia at L4-L6 levels revealed no significant changes in proCCK mRNA after the lesion. However, sciatic nerve section was associated with a marked ipsilateral increase in both CCK-B receptor mRNA levels in these ganglia (+70%) and the autoradiographic labeling of CCK-B receptors by [3H]pBC 264 (+160%) in the superficial layers of the lumbar dorsal horn. Up-regulation of CCK-B receptors rather than CCK synthesis and release probably contributes to increased spinal CCKergic neurotransmission in neuropathic pain.  相似文献   

6.
Abstract— Anterograde and retrograde flux of axonal transported glycoproteins were examined in streptozotocin diabetic rats with 4 weeks'duration of the metabolic derangement.
[3H]Fucose and [14C]NeuNAc were injected into the fifth lumbar root ganglion and the accumulation of TCA-PTA insoluble activity proximal and distal to a sciatic nerve ligature was measured.
Accumulation of glycoproteins during 2 h collection periods was decreased distal to a ligature in diabetic animals whereas no abnormality of proximal accumulation was observed. These findings demonstrate an abnormality of the retrograde transport of glycoproteins in early experimental diabetes.  相似文献   

7.
Synthesis of Acetylcholine from Acetate in a Sympathetic Ganglion   总被引:10,自引:9,他引:1  
Abstract: The present experiments tested whether acetate plays a role in the provision of acetyl-CoA for acetylcholine synthesis in the cat's superior cervical ganglion. Labeled acetylcholine was identified in extracts of ganglia that had been perfused for 20 min with Krebs solution containing choline (10−5 M ) and [3H], [1-4C], or [2-14C]acetate (103 M ); perfusion for 60 min or with [3H]acetate (10−2 M ) increased the labeling. The acetylcholine synthesized from acetate was available for release by a Ca2+-dependent mechanism during subsequent periods of preganglionic nerve stimulation. When ganglia were stimulated via their preganglionic nerves or by exposure to 46 m M K+, the labeling of acetylcholine from [3H]acetate was reduced when compared with resting ganglia. The reduced synthesis of acetylcholine from acetate during stimulation was not due to acetate recapture, shunting of acetate into lipid synthesis, or the transmitter release process itself. In ganglia perfused with [2-14C]glucose, the amount of labeled acetylcholine formed was clearly enhanced during stimulation. An increase in acetylcholine labeling from [3H]acetate was shown during a 15-min resting period following a 60-min period of preganglionic nerve stimulation (20 Hz). It is concluded that acetate is not the main physiological acetyl precursor for acetylcholine synthesis in this sympathetic ganglion, and that during preganglionic nerve stimulation there is enhanced delivery of acetyl-CoA to choline acetyltransferase from a source other than acetate.  相似文献   

8.
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3H]Muscimol (Mus), [3H]flunitrazepam (Flu), and t -[35S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35S]TBPS binding, which was present shortly after dosing. In addition, [3H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3H]Flu and [3H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor.  相似文献   

9.
Abstract— Desheathed rat dorsal root ganglia were incubated in a medium containing amino-oxyacetic acid and [3H]GABA. Under these conditions, [3H]GABA is taken up exclusively by the satellite glial cells in the ganglia. Efflux of [3H]GABA from the tissue was measured after passing the ganglia through a series of wash solutions. The spontaneous efflux of radioactivity, mostly [3H]GABA, was more rapid in the absence of amino-oxyacetic acid in the incubation and wash media.
Raising the potassium concentration in the wash media caused an increase in the efflux of [3H]GABA. This increase was sigmoidally related to the potassium concentration in the wash media, reaching a maximum at 64 m m -K+. The releasing effect of K+ was inhibited by removing calcium from the media. Reducing the calcium and raising the magnesium concentration in the wash solutions inhibited the increased efflux of [3H]GABA due to 64 m m -K+ by 48 per cent, while 5 mM-La3+ and diphenylhydantoin (0·005 and 0·5 m m ) had no effect on this increase.
Only a small increase in the efflux of [14C]glutamate was produced by 64 m m -K+ and it had no effect upon the effluxes of [3H]glycine, [3H]alanine or [3H]leucine. The efflux of lactate dehydrogenase was similarly unaffected by 64 mM-K+. The results suggest that glial cells in spinal ganglia can respond to depolarizing concentrations of potassium by releasing GABA in a calcium-dependent process.  相似文献   

10.
Binding of γ-Aminobutyric AcidA Receptors to Tubulin   总被引:1,自引:1,他引:0  
Abstract: The rate of axonal transport of tubulin, actin, and the neurofilament proteins was measured in the peripheral and central projections of the rat L5 dorsal root ganglion (DRG). [35S]Methionine was injected into the DRG, and the "front" of the radiolabeled protein was located 7, 14, and 20 days postinjection. Transport rates calculated for the neurofilament triplet proteins, tubulin, and actin in the peripheral nerve were ∼ 1.5-fold faster than those in the dorsal root. A progressive decrease in the rate of transport was observed from 7 to 20 days after radiolabeling in both the central and peripheral directions (neurofilaments, ∼ 1.7-fold; tubulin/actin, 2.1-fold). A surgical preparation, leaving the peripheral sciatic nerve with predominantly sensory fibers, was the basis for ELISAs for phosphorylation-dependent immunoreactivity of the high-molecular-weight neurofilament protein. In both dorsal roots and peripheral sensory axons the degree of phosphorylation was greater in nerve segments further away from the cell bodies. The degree of phosphorylation-related immunoreactivity correlates with the slowing of transport of radiolabeled cytoskeletal protein.  相似文献   

11.
Abstract: Resiniferatoxin and capsaicin are sensory neurone-specific excitotoxins that operate a common cation channel in nociceptors. Resiniferatoxin is structurally similar to capsaicin and to phorbol esters. Specific [3H]-resiniferatoxin binding, which was detected in the membrane ( K D value 1.8 ± 0.2 n M ) but not cytosolic fraction of rat dorsal root ganglia, could not be displaced by phorbol 12,13-dibutyrate. Conversely, resiniferatoxin did not displace [3H]phorbol 12,13-dibutyrate binding in either the cytosolic or membrane fraction. Resiniferatoxin and capsaicin both caused translocation of protein kinase C in dorsal root ganglion neurones (EC50 value 18 ± 3 n M ). This translocation was greatly reduced but not abolished, in the absence of external Ca2+, suggesting that it was secondary to Ca2+ entry. Resiniferatoxin also caused direct activation of a Ca2+- and lipid-dependent kinase (or kinases) in the cytosolic fraction of dorsal root ganglia, at concentrations (100 n M to 10 µ M ) higher than required for displacement of [3H]resiniferatoxin binding or translocation of protein kinase C. Capsaicin (up to 10 µ M ) was unable to mimic this effect. These data imply that although resiniferatoxin-induced translocation of protein kinase C in dorsal root ganglion neurones was mainly indirect, it also caused direct activation of a protein kinase C-like kinase in these cells.  相似文献   

12.
Abstract: The posterior stomach nerve (PSN) is a crustacean sensory nerve containing about 60 cholinergic neurons, which are devoid of synaptic interactions. Kinetic analysis shows that the PSN takes up [3H]choline by both low-affinity ( K m= 163 μM) and high-affinity (Na+-dependent) ( K m= 1 μM) processes. The capacity of the high-affinity system is only about 1% that of the low-affinity system. The high-affinity system is not tightly coupled to acetylcholine (ACh) synthesis, and it appears that both ACh and phosphorylcholine are formed from an intracellular pool of choline, which is fed by both uptake systems. There are differences in the rates of [3H]choline uptake and 3H metabolite accumulation between regions of the PSN that contain neuronal cell bodies and those that do not. These differences may arise from differences in the relative proportion of neuronal to nonneuronal tissue in each nerve region.  相似文献   

13.
Abstract: High-affinity choline transport (HAChT), the rate-limiting and regulatory step in acetylcholine (ACh) synthesis, is selectively localized to cholinergic neurons. Hemicholinium-3 (HC3), a potent and selective inhibitor of HAChT, has been used as a specific radioligand to quantify HAChT sites in membrane binding and autoradiographic studies. Because both HAChT velocity and [3H]HC3 binding change as in vivo activity of cholinergic neurons is altered, these markers are also useful measures of cholinergic neuronal activity. Evidence that [3H]HC3 is a specific ligand for HAChT sites on cholinergic terminals is reviewed. The ion requirements of HAChT and [3H]HC3 binding indicate that sodium and chloride are required for recognition of both choline and [3H]HC3. A common recognition site is also indicated by the close correspondence of the potency of HC3 and choline analogues for inhibiting both HAChT and [3H]HC3 binding. The parallel regional distributions of both markers in adult brain, during development and after specific lesions, all indicate specific cholinergic localization. The close association of HAChT and [3H]HC3 binding sites is also supported by parallel regulatory changes occurring after in vivo drug treatments and in vitro depolarization. Overall, the data indicate a close association between HAChT and [3H]HC3 binding and are consistent with the sites being identical. Methodologic considerations in using [3H]HC3 as a ligand and considerations in interpretation of results are also discussed.  相似文献   

14.
Abstract: In a previous report, we showed that the enantiomers of α- and β-methylcholine inhibited choline uptake with Stereoselectivity, but that their transport by the choline carrier of nerve terminals showed stereospecificity. The present experiments used the same choline analogues to determine if either of the above characteristics pertains to their ability to interact with the [3H]-hemicholinium-3 binding site present on striatal membranes and synaptosomes. [3H]Hemicholinium-3 binding to striatal membranes could be inhibited stereoselectively by the enantiomers of β-methylcholine, but R (+)-α-methyl-choline was little better than its enantiomer in this test. However, [3H]hemicholinium-3 binding to striatal synaptosomes was inhibited stereoselectively by the enantiomers of both α- and β-methylcholine. This difference between the properties of [3H]hemicholinium-3 binding to membranes or to synaptosomes appears related to the presence of two ligand binding states. The [3H]hemicholinium-3 binding site could be shifted to a low-affinity state by ATP treatment and to a high-affinity state by EDTA washing. When the [3H]hemicholinium-3 binding site existed in its low-affinity state, binding was inhibited stereoselectively by the enantiomers of both a- and β-methylcholine, but when shifted to its high-affinity state, it was inhibited stereoselectively only by the enantiomers of β–methylcholine. We conclude that hemicholinium-3 interacts with the substrate recognition site of the high-affinity choline transporter, but that the Stereoselectivity of this site changes depending on its affinity state.  相似文献   

15.
Abstract: Rapidly transported proteins and glycoproteins in the auditory and optic nerves of the guinea pig were analyzed by electrophoresis and two-dimensional electrofocusing/electrophoresis. Proteins transported in the auditory nerve were analyzed in the cochlear nucleus 3 h after cochlear injection of radioactive precursor, and proteins transported in the optic nerve were analyzed in the superior colliculus 6 h after intraocular injection of radioactive precursor. Two-dimensional analysis showed that several rapidly transported polypeptides were present in one system, but not in the other. By use of [3H]fucose as a precursor or by separating [35S]methionine-labeled polypeptides on immobilized concanavalin A or wheat germ agglutinin, it was shown that most of the proteins transported in only one system are glycoproteins. As previously reported a polypeptide of molecular weight 140,000 was a major labeled species in the auditory nerve. This polypeptide was also found in the optic nerve, but only as a minor species. Two other polypeptides with molecular weights and isoelectric points similar to those of the 140,000 molecular weight polypeptide were present in both systems, but were much more abundant in the optic nerve. The major labeled polypeptide in both systems had a molecular weight of 25,000.  相似文献   

16.
Abstract: The effect of colchicine (0.5 mM) and of cytochalasin B (10−4 M) on the release of [35S]taurine from the isolated chick retina, upon stimulation by 68.5 mM-KCl, 10−5 M-veratridine and 10 mM-glutamate, was studied. Cytochalasin and colchicine effects on taurine release were compared with those on K+-stimulated release of [3H]dopamine and [3H]GABA. Colchicine caused a marked decrease of the [35S]taurine release evoked by the three stimulatory agents; it also decreased [3H]dopamine release without affecting that of [3H]GABA. Cytochalasin B significantly decreased the efflux of [35S]taurine stimulated by glutamate or veratridine without altering that evoked by 68.5 mM-KCl. Cytochalasin practically suppressed the [3H]dopamine-stimulated release and slightly decreased that of [3H]GABA. This drug produced a high increase in the spontaneous release of labeled GABA and taurine. These results suggest that the release of taurine and GABA from the chick retina probably occurs through different mechanisms. It is suggested that taurine release may be related to a process involving contractile proteins.  相似文献   

17.
Abstract— When [2-3H]glycerol was injected intracranially into young rats, it was presented as a pulse label, leaving the brain rapidly and giving up much of its labelled hydrogen to water. [2-3H]glycerol was efficiently incorporated into brain lipids, especially into choline and ethanolamine phospholipids. Following injection of a mixture of [3H]- and [14C]-labelled glycerol, the ratio of 3H to 14C in the phospholipids of both whole brain and the microsomal fraction decreased as a function of time after injection. This finding indicated less recycling of the tritium label. This lack of recycling was further indicated by the finding that 94 per cent of the tritium label of phosphatidyl choline was in the glycerol portion of the molecule rather than in the fatty acids. At 2 weeks following injection with [3H]glycerol, 93 per cent of the total radioactivity in brain appeared in the lipid fraction. In contrast, following injection with [14C]glycerol, only 57 per cent of the radioactivity appeared in lipid, with about 20 per cent in protein.  相似文献   

18.
Abstract: Proteins of the paniculate fraction of sciatic nerve of rats ranging from 1 to 55 days of age were analyzed by polyacrylamide gel electrophoresis. The major myelin protein, P0, could not be detected at 1 day of age, but by 10 days it comprised from 15 to 20% of the particulate protein, the same proportion as in adult rats. Growth of nerve continued throughout the period studied. Rat sciatic nerves were incubated with [32P]orthophosphate or [3H]fucose. Particulate matter proteins from sciatic nerve (and in certain cases proteins of myelin purified from sciatic nerve) were separated by polyacrylamide disc gel electrophoresis and the distribution of protein and of radioactivity along the gels was determined. [32P]Phosphate appeared to label all myelin proteins. Labeling with fucose was more specific; myelin basic proteins were not fucosylated. A developmental study showed that sciatic nerves from 2-day-old rats could incorporate radioactive fucose and [32P]-phosphate into several proteins at the P0 region of polyacrylamide gels. Specific radioactivity of [3H]fucose in P0 protein was highest in preparations from 5-day-old rats and declined by 80% over the next 5 days as it was diluted by accumulating myelin. The specific radioactivity of incorporated [32P] phosphate was high at the early age points and declined as a result of the accumulation of compact myelin. The results indicate an association of fucosylation and/or phosphorylation with some step in the formation of myelin.  相似文献   

19.
Abstract— To demonstrate release of ACh in the absence of inhibition of cholinesterase, slices of cerebral cortex were incubated with [3H]choline, after which they were placed in a tissue bath for superfusion. Hemicholinium (HC-3) increased the spontaneous efflux of [3H]choline. Electrical stimulation at 4/s increased the efflux of [3H]choline to the same extent whether the slices were stimulated early or late during superfusion. The effect of stimulation on efflux of [3H]choline was abolished by tetrodotoxin and by the absence of calcium. The extent of choline efflux resulting from stimulation, as calculated from the specific radioactivity of the incubation medium, was the same when the slices were incubated with 0.1 or 1.0mM choline, but was less with lower concentrations of choline. We conclude that the increased efflux of [3H]choline evoked by stimulation probably originates from stores of [3H]ACh synthetized during incubation.  相似文献   

20.
Three-year-old beech trees were fed 35S-sulphate in August 1993 via a flap in a mature leaf of an upper branch. Harvest of beech trees was performed 24 h after feeding 35S-sulphate, before leaf senescence, after leaf abscission, in early winter (January 1994). in late winter (March 1994). before bud break and after bud break. Twenty-four h after feeding 35S-sulphate, 0.7 ± 0.5% of the 35S-radioactivity taken up was exported out of the fed leaf. When trees were analysed 2 months later, i.e., before leaf senescence, this value had increased to 22 ± 7%. The exported 35S-radioactivity was located in the branch containing the fed leaf (2.8 ± 13%). in basipetal parts of the trunk (41 ± 77%) and in the main rool (21 ± 6%). Leaves and apical parts of the trunk were no sink organs for the exported sulphur. Along the tree axis the main proportion of the radiolabel was located in the wood, predominantly in the acid soluble fraction. In the bark the greater portion of the radiolabel was found in the acid insoluble fraction. In both tissues the bulk of the 35S of the soluble fraction was sulphate together with small amounts of glutathione. This pattern did not change until bud break. After bud break, basipetal parts of the trunk lost part of its 35S-radioactivity. Of the 35S-radioactivity which had been exported out of the fed leaf during the previous autumn, 16 ± 2% remained in the trunk, whereas 47 ± 7% of the 35S was found in branches, mainly in the newly developed leaves. The present results show that sulphur, mainly in the form of sulphate, is stored along the tree axis in both bark and wood of beech trees and is re-mobilised during leaf development in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号