首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of VEGFR-2 (Quek1) is an important mechanism during blood vessel formation. In the paraxial mesoderm, Quek1 expression is restricted to the lateral portion of the somite and later to sclerotomal cells surrounding the neural tube. By grafting of either intermediate mesoderm or BMP4 beads into the paraxial mesoderm, we show that BMP4 is a positive regulator of VEGFR-2 (Quek1) expression in the quail embryo. Separation of somites from intermediate mesoderm leads to down-regulation of Quek1 expression. The expression of Quek1 in the medial somite half is normally repressed by the notochord and becomes up-regulated and lateromedially expanded after separation of the notochord. Our results show that up-regulation of BMP4 leads to an increase of the number of blood vessels, whereas inhibition of BMP4 by noggin results in a reduction of blood vessels.  相似文献   

2.
Regulation of VEGFR-2 (Quek1) is an important mechanism during blood vessel formation. In the paraxial mesoderm, Quek1 expression is restricted to the lateral portion of the somite and later to sclerotomal cells surrounding the neural tube. By implanting FGF 8b/8c or SU 5402 beads into the paraxial mesoderm, we show that FGF8 in addition to BMP4 from the intermediate mesoderm (IM) is a positive regulator of VEGFR-2 (Quek1) expression in the quail embryo. The expression of Quek1 in the medial somite half is normally repressed by the notochord and Sfrps-expression in the neural tube. Over-expression of Wnt 1/3a also results in an up-regulation of Quek1 expression in the somites. We also show that up-regulation of FGF8/Wnt 1/3a leads to an increase in the number of endothelial cells, whereas inhibition of FGF and Wnt signaling by SU 5402 and Sfrp-2 results in a loss of endothelial cells. Our results demonstrate that the regulation of Quek1 expression in the somites is mediated by the cooperative actions of BMP4, FGF8 and Wnt-signaling pathways.  相似文献   

3.
Control of neural crest cell dispersion in the trunk of the avian embryo   总被引:4,自引:1,他引:3  
Many hypotheses have been advanced to explain the orientation and directional migration of neural crest cells. These include positive and negative chemotaxis, haptotaxis, galvanotaxis, and contact inhibition. To test directly the factors that may control the directional dispersion of the neural crest, I have employed a variety of grafting techniques in living embryos. In addition, time-lapse video microscopy has been used to study neural crest cells in tissue culture. Trunk neural crest cells normally disperse from their origin at the dorsal neural tube along two extracellular pathways. One pathway extends laterally between the ectoderm and somites. When either pigmented neural crest cells or neural crest cells isolated from 24-hr cultures are grafted into the space lateral to the somites, they migrate: (1) medially toward the neural tube in the space between the ectoderm and somites and (2) ventrally along intersomitic blood vessels. Once the grafted cells contact the posterior cardinal vein and dorsal aorta they migrate along both blood vessels for several somite lengths in the anterior-posterior axis. Neural crest cells grafted lateral to the somites do not immediately move laterally into the somatic mesoderm of the body wall or the limb. Dispersion of neural crest cells into the mesoderm occurs only after blood vessels and nerves have first invaded, which the grafted cells then follow. The other neural crest pathway extends ventrally alongside the neural tube in the intersomitic space. When neural crest cells were grafted to a ventral position, between the notochord and dorsal aorta, in this intersomitic pathway at the axial level of the last somite, the grafted cells migrate rapidly within 2 hr in two directions: (1) dorsally, in the intersomitic space, until the grafted cells contact the ventrally moving stream of the host neural crest and (2) laterally, along the dorsal aorta and endoderm. All of the above experiments indicate that neither a preestablished chemotactic nor adhesive (haptotactic) gradient exists in the embryo since the grafted neural crest cells will move in the reverse direction along these pathways toward the dorsal neural tube. For the same reason, these experiments also show that dispersal of the neural crest is not directed passively by other environmental controls, since the cells can clearly move counter to their usual pathway and against such putative passive mechanisms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
This study examines the pathways of migration followed by neural crest cells in Xenopus embryos using two recently described cell marking techniques. The first is an interspecific chimera created by grafting Xenopus borealis cells into Xenopus laevis hosts. The cells of these closely related species can be distinguished by their nuclear dimorphism. The second type of marker is created by microinjection of lysinated dextrans into fertilized eggs which can then be used for intraspecific grafting. These recently developed fluorescent dyes are fixable and identifiable in both living and fixed embryos. After grafting labeled donor neural tubes into unlabeled host embryos, the distribution of neural crest cells at various stages after grafting was used to define the pathways of neural crest migration. To control for possible grafting artifacts, fluorescent lysinated dextran was injected into a single blastomere which gives rise to a large number of neural crest cells, thereby labeling the neural crest without grafting. By all three techniques, Xenopus neural crest cells were observed along two predominant pathways in the trunk. The majority of neural crest cells were observed along a "ventral" route, between the neural tube and somite, the notochord and somite, and along the dorsal mesentery. A second group of neural crest cells was observed "dorsally" where they populated the dorsal fin. A third minor "lateral" pathway was observed primarily in borealis/laevis chimerae and in blastomere-injected embryos; some neural crest cells were observed underneath the ectoderm lateral to the neural tube. Along the rostrocaudal axis, neural crest cells were not continuously distributed but were primarily located across from the caudal two-thirds of the somite. Fewer than 3% of the neural crest cells were observed across from the rostral third of each somite. When grafted to ventral locations, neural crest cells were not able to migrate dorsally but migrated laterally along the dorsal mesentery. Labeled neural crest cells gave rise to cells of the spinal, sympathetic, and enteric ganglia as well as to adrenal chromaffin cells, Schwann cells, pigment cells, mesenchymal cells of the dorsal fin, and some cells in the integuments and in the region of the pronephros. These results show that the neural crest migratory pathways in Xenopus differ from those in the avian embryo. In avians NC cells migrate as a closely associated sheet of cells while in Xenopus they migrate as individual cells. Both species exhibit a metamerism in the neural crest cell distribution pattern along the rostrocaudal axis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The developmental potency of cells isolated from the primitive streak and the tail bud of 8.5- to 13.5-day-old mouse embryos was examined by analyzing the pattern of tissue colonization after transplanting these cells to the primitive streak of 8.5-day embryos. Cells derived from these progenitor tissues contributed predominantly to tissues of the paraxial and lateral mesoderm. Cells isolated from older embryos could alter their segmental fate and participated in the formation of anterior somites after transplantation to the primitive streak of 8.5-day host embryo. There was, however, a developmental lag in the recruitment of the transplanted cells to the paraxial mesoderm and this lag increased with the extent of mismatch of developmental ages between donor and host embryos. It is postulated that certain forms of cell-cell or cell-matrix interaction are involved in the specification of segmental units and that there may be age-related variations in the interactive capability of the somitic progenitor cells during development. Tail bud mesenchyme isolated from 13.5-day embryos, in which somite formation will shortly cease, was still capable of somite formation after transplantation to 8.5-day embryos. The cessation of somite formation is therefore likely to result from a change in the tissue environment in the tail bud rather than a loss of cellular somitogenetic potency.  相似文献   

6.
Semaphorins are a large family of secreted and cell surface molecules that guide neural growth cones to their targets during development. Some semaphorins are expressed in cells and tissues beyond the nervous system suggesting the possibility that they function in the development of non-neural tissues as well. In the trunk of zebrafish embryos endothelial precursors (angioblasts) are located ventral and lateral to the somites. The angioblasts migrate medially and dorsally along the medial surface of the somites to form the dorsal aorta just ventral to the notochord. Here we show that in zebrafish Sema3a1 is involved in angioblast migration in vivo. Expression of sema3a1 in somites and neuropilin 1, which encodes for a component of the Sema3a receptor, in angioblasts suggested that Sema3a1 regulates the pathway of the dorsally migrating angioblasts. Antisense knockdown of Sema3a1 inhibited the formation of the dorsal aorta. Induced ubiquitous expression of sema3a1 in hsp70:(gfp)sema3a1(myc) transgenic embryos inhibited migration of angioblasts ventral and lateral to the somites and retarded development of the dorsal aorta, resulting in severely reduced blood circulation. Furthermore, analysis of cells that express angioblast markers following induced expression of sema3a1 or in a mutant that changes the expression of sema3a1 in the somites confirmed these results. These data implicate Sema3a1, a guidance factor for neural growth cones, in the development of the vascular system.  相似文献   

7.
8.
The stimulation of somite chondrogenesis by extracellular materials was studied using scanning and transmission electron microscopy and light microscopy. Analysis of control somite explants (no additives to the medium) cultured on Nuclepore filters for 24 h demonstrates cell processes extending to the undersurface of the filter. The cell processes secrete a matrix of fibers sparsely coated with granules which form amorphous sheets after 3 days in culture. Somite explants treated with proteoglycan complex, extracted from 13-day chick sterna, produce a dense matrix of fibers heavily coated with granules. Selective enzymatic digestions with chondroitinase ABC and purified collagenase demonstrate that the fibers are collagen and the granules are proteoglycans. Proteoglycan complex was separated into its components using cesium chloride density centrifugation. Each of these fractions was tested for its stimulating capacity in somite explants as analyzed using scanning electron microscopy. The importance of these components in relationship to the perinotochordal materials is discussed. When somite explants are cultured with the notochord, the matrix produced by somitic cells in the region of the notochord is similar to that of explants treated with proteoglycan complex. Away from the region of the notochord, the somitic cells produce a matrix similar to that of control explants. The evidence presented in this report suggests that it is the presence of the perinotochordal materials which creates the proper environment in vivo for the precise timing and phenotypic expression of somite chondrogenesis.  相似文献   

9.
The first collagen recognizable in the embryo is in the formof an incomplete basal lamina under the epiblast and hypoblast.We suggest that this collagen acts as a railroad track to guidethe migration of the primitive streak mesenchyme. The mesenchymeaggregates into chordamesoderm, a layer which is said to "induce"the overlying epiblast (now ectoderm) to develop into neuralfolds. This tissue interaction may be mediated by the formationof complete basal laminas separating the two tissues and bydeposition of sulfated mucopolysaccharides in the interveningextracellular space. At the very least, the collagenous basallamina serves to give the elongating cells of the developingneural tube a firm foothold. The fully formed neural tube andadjacent notochord are said to induce the sclerotome of thesomite to migrate medially and differentiate into cartilage.Notochord and neural tube basal lamina and collagen fibrilsmay play a role by guiding the migrating cells and stabilizingthe already existing chondrogenic bias of the cells. We wereunable to prove this hypothesis directly (by adding collagento somite cultures), because in our hands the somites died invitro even in the presence of neural tube and notochord. Wedid obtain direct evidence, however, that the basal lamina ofthe lens can promote the differentiation of the cornea in vitro.  相似文献   

10.
We studied the behavior of myogenic progenitors from donor desmin(+/-) LacZ embryos after implantation into tibialis anterior muscle of 2-month-old mouse hosts. Myogenic progenitors were collected from 10-day post-coital mouse embryo somite dermomyotomes (DMs), forelimb buds (LBs), and trunks. The replacement of desmin by the LacZ coding sequence allowed specific monitoring of beta-galactosidase expression in donor myogenic cells. Immunostaining for myosin heavy chain and laminin expression was performed together with acetylcholine receptor histochemistry on sections of implanted muscle. Myogenic progenitors generated from DM, LB, and trunk were able to proliferate and adopt a myogenic pathway after transplantation into adult mouse muscle. Although their development appeared to be limited for DM and LB cell transplantation, the differentiation of myogenic progenitors occurred readily with trunk cell injection, suggesting that cell types associated with DM cells were involved in long-term myofiber differentiation (21 day). When neural tube/notochord (NTN) or sclerotomal (S) cells were co-transplanted with DM cells, myogenic nuclei were produced, indicating that both NTN and S are required for the differentiation of DMs grafted into adult muscle. These data are consistent with the differentiation of neural tissues and bone from NTN and S, respectively, and with the development of anatomic relations among all in vivo-differentiated tissues. These results suggest that embryonic trunk cells can be used to repair different types of injured tissues (especially skeletal muscle) under appropriate environmental conditions.  相似文献   

11.
The ventro-medial wall of a somite gives rise to the sclerotome and then to cartilaginous axial skeleton, while the dorso-lateral wall differentiates into the dermomyotome to form dermal mesenchyme and muscle. Although previous studies suggested pluri-potency of somite cell differentiation, apparent pluri-potency may be the result of migration of predetermined cells. To investigate whether the developmental fate of any region is determined, I isolated fragments of a region of a quail somite and transplanted them into chick embryos. When a fragment of the ventral wall of a quail somite, the prospective sclerotome, was transplanted into a chick embryo between the ectoderm and a newly formed somite, the transplanted quail cells were shown to form myotome and mesenchyme in 4-day chimera embryos and to form muscle and dermal tissue in 9-day chimeras. On the other hand, when a fragment of the dorsal wall of a quail somite, the prospective dermomyotome, was transplanted into a chick embryo between the neural tube and a newly formed somite, the graft gave rise to mesenchyme around the neural tube and notochord and then to vertebral cartilage. Thus the developmental fate of a region of a somite was shown not to be determined at the time of somite segmentation, confirming previous observations.  相似文献   

12.
We have examined the somitic cell contribution to the vertebral column of the chick by genetic labeling of sclerotomal cells in early development. Single somites of embryonic Day 2 embryos were filled with retroviral particles containing the lacZ transducing vector BAG. After a further 14 or 17 days of incubation the embryos were fixed and the vertebral column was sectioned and stained histochemically for the lacZ gene product beta-galactosidase. Cells staining for the enzyme were found exclusively on the injected side of two vertebral segments; the staining was largely restricted, however, to the caudal half of the more rostral segment and the rostral half of the next more caudal segment. No embryos were observed with labeling in less than two vertebral segments. Moreover, labeled cells were not uniformly distributed within the labeled region of each vertebra; the neural arch, for example, usually contained a higher proportion of labeled cells than did the centrum. These observations support the concept of resegmentation, whereby a vertebra forms from sclerotomal cells derived from two consecutive somites resulting in a vertebral column shifted by one half segment with respect to the segmented boundaries of the somites. The quantitative distribution of labeled cells in the vertebrae also suggests that sclerotomal cells populate the region of a future vertebral segment in an orderly fashion dependent on when the cells migrate from the somite.  相似文献   

13.
During vertebrate neural tube formation, the initially lateral borders between the neural and epidermal ectoderm fuse to form the definitive dorsal region of the embryo, while the initially dorsally located notochord-floor plate complex is being internalised. Along the definitive dorso-ventral body axis, one can distinguish an epaxial (dorsal to the notochord) and a hypaxial (ventral to the notochord) body region. The mesodermal somites on both sides of the notochord and neural tube give rise to the trunk skeleton and skeletal muscle. Muscle forms from the somite-derived dermomyotomes and myotomes that elongate dorsally and ventrally. Based on gene expression patterns and comparative embryology, it is proposed here that the epaxial (dermo)myotome region in amniote embryos is subdivided into a dorsalmost and a centrally intercalated subregion. The intercalated subregion abuts to the hypaxial (dermo)myotome region that elongates ventrally via the hypaxial somitic bud. The dorsalmost subregion elongates towards the dorsal neural tube and is proposed to derive from an epaxial somitic bud. The dorsalmost and hypaxial somite derivatives share specific gene expression patterns which are distinct from those of the intercalated somite derivatives. The intercalated somite derivatives develop adaxially, i.e. at the level of the notochord-floor plate complex. Thus, the dorsalmost and intercalated (dermo)myotome subregions may be influenced preferentially by signals from the dorsal neural tube and from the notochord-floor plate complex, respectively. These (dermo)myotome subregions are sharply delimited from each other by molecular boundary markers, including Engrailed and Wnts. It thus appears that the molecular network that polarises borders in Drosophila and vertebrate embryogenesis is redeployed during subregionalisation of the (dermo)myotome. It is proposed here that cells within the amniote (dermo)myotome establish polarised borders with organising capacity, and that the epaxial somitic bud represents a mirror-image duplication of the hypaxial somitic bud along such a border. The resulting epaxial-intercalated/adaxial-hypaxial regionalisation of somite derivatives is conserved in vertebrates although the differentiation of sclerotome and myotome starts heterochronically in embryos of different vertebrate groups.  相似文献   

14.
Abstract. In vertebrates, metameric organization is highlighted by the formation of somites from mesenchymal cells of the segmental plate which then differentiate into dermamyotomal and sclerotomal tissues. The resegmentation of the sclerotome into rostral and caudal halves follows, coincident with the production of specific extracellular matrix molecules at the abutment of these two cell types. Ultimately, cells from the caudal sclerotome migrate ventrally and contribute to the chondrogenic prevertebrae. The objective of this work is to investigate the molecular steps regulating these events. Our study is focused on the paired-box containing genes, which have been implicated in delineating boundaries early in development. A chick embryo system, which is readily accessible to manipulation and observation during early development, is used in this study. We have identified the existence of the paired-box motif in the chicken genome by polymerase chain reaction and hybridization with the mouse Pax 1 paired-box sequence. Expression of paired-box genes occurs early in development as shown by Northern analysis, and is localized by in situ hybridization to the edge of each somite, a patch at the central core of each somite, and the periphery of the neural tube. This specific spatial pattern of expression is consistent with the hypothesis that the pair-rule genes function as effecters of border formation in the early embryo. Moreover, the patch of positive cells at the center of a resegmenting somite appear to migrate ventrally, and may contribute to structures of the prevertebrae. These findings are relevant to our understanding of the mechanism of somite resegmentation and implicate the involvement of pair-rule genes in the process.  相似文献   

15.
Abstract. In vertebrates, metameric organization is highlighted by the formation of somites from mesenchymal cells of the segmental plate which then differentiate into dermamyotomal and sclerotomal tissues. The resegmentation of the sclerotome into rostral and caudal halves follows, coincident with the production of specific extracellular matrix molecules at the abutment of these two cell types. Ultimately, cells from the caudal sclerotome migrate ventrally and contribute to the chondrogenic prevertebrae. The objective of this work is to investigate the molecular steps regulating these events. Our study is focused on the paired-box containing genes, which have been implicated in delineating boundaries early in development. A chick embryo system, which is readily accessible to manipulation and observation during early development, is used in this study. We have identified the existence of the paired-box motif in the chicken genome by polymerase chain reaction and hybridization with the mouse Pax 1 paired-box sequence. Expression of paired-box genes occurs early in development as shown by Northern analysis, and is localized by in situ hybridization to the edge of each somite, a patch at the central core of each somite, and the periphery of the neural tube. This specific spatial pattern of expression is consistent with the hypothesis that the pair-rule genes function as effecters of border formation in the early embryo. Moreover, the patch of positive cells at the center of a resegmenting somite appear to migrate ventrally, and may contribute to structures of the prevertebrae. These findings are relevant to our understanding of the mechanism of somite resegmentation and implicate the involvement of pair-rule genes in the process.  相似文献   

16.
Recent studies suggest that neurons born in the developing basal forebrain migrate long distances perpendicularly to radial glia and that many of these cells reach the developing neocortex. This form of tangential migration, however, has not been demonstrated in vivo, and the sites of origin, pathways of migration and final destinations of these neurons in the postnatal brain are not fully understood. Using ultrasound-guided transplantation in utero, we have mapped the migratory pathways and fates of cells born in the lateral and medial ganglionic eminences (LGE and MGE) in 13.5-day-old mouse embryos. We demonstrate that LGE and MGE cells migrate along different routes to populate distinct regions in the developing brain. We show that LGE cells migrate ventrally and anteriorly, and give rise to the projecting medium spiny neurons in the striatum, nucleus accumbens and olfactory tubercle, and to granule and periglomerular cells in the olfactory bulb. By contrast, we show that the MGE is a major source of neurons migrating dorsally and invading the developing neocortex. MGE cells migrate into the neocortex via the neocortical subventricular zone and differentiate into the transient subpial granule neurons in the marginal zone and into a stable population of GABA-, parvalbumin- or somatostatin-expressing interneurons throughout the cortical plate.  相似文献   

17.
Formation of vertebrae occurs via endochondral ossification, a process involving condensation of precartilaginous cells. Here, we provide the first molecular evidence of mechanism that underlies initiation of this process by showing that the extracellular factor, Epimorphin, plays a role during early steps in vertebral cartilage condensation. Epimorphin mRNA is predominantly localized in the vertebral primordium. When provided exogenously in ovo, it causes precocious differentiation of chondrocytes, resulting in the formation of supernumerary vertebral cartilage in chicken embryos. To further analyze its mode of action, we used an in vitro co-culture system in which labeled 10T1/2 or sclerotomal prechondrogenic cells were co-cultured with unlabeled Epimorphin-producing cells. In the presence of Epimorphin, the labeled cells formed tightly packed aggregates, and sclerotomal cells displayed augmented accumulation of NCAM and other early markers of chondrocyte differentiation. Finally, we found that the Epimorphin expression is initiated during vertebrogenesis by Sonic hedgehog from the notochord mediated by Sox 9. We present a model in which successive action of Epimorphin in recruiting and stacking sclerotomal cells leads to a sequential elongation of a vertebral primordium.  相似文献   

18.
Patterning of angiogenesis in the zebrafish embryo   总被引:17,自引:0,他引:17  
Little is known about how vascular patterns are generated in the embryo. The vasculature of the zebrafish trunk has an extremely regular pattern. One intersegmental vessel (ISV) sprouts from the aorta, runs between each pair of somites, and connects to the dorsal longitudinal anastomotic vessel (DLAV). We now define the cellular origins, migratory paths and cell fates that generate these metameric vessels of the trunk. Additionally, by a genetic screen we define one gene, out of bounds (obd), that constrains this angiogenic growth to a specific path. We have performed lineage analysis, using laser activation of a caged dye and mosaic construction to determine the origin of cells that constitute the ISV. Individual angioblasts destined for the ISVs arise from the lateral posterior mesoderm (LPM), and migrate to the dorsal aorta, from where they migrate between somites to their final position in the ISVs and dorsal longitudinal anastomotic vessel (DLAV). Cells of each ISV leave the aorta only between the ventral regions of two adjacent somites, and migrate dorsally to assume one of three ISV cell fates. Most dorsal is a T-shaped cell, based in the DLAV and branching ventrally; the second constitutes a connecting cell; and the third an inverted T-shaped cell, based in the aorta and branching dorsally. The ISV remains between somites during its ventral course, but changes to run mid-somite dorsally. This suggests that the pattern of ISV growth ventrally and dorsally is guided by different cues. We have also performed an ENU mutagenesis screen of 750 mutagenized genomes and identified one mutation, obd that disrupts this pattern. In obd mutant embryos, ISVs sprout precociously at abnormal sites and migrate anomalously in the vicinity of ventral somite. The dorsal extent of the ISV is less perturbed. Precocious sprouting can be inhibited in a VEGF morphant, but the anomalous site of origin of obd ISVs remains. In mosaic embryos, obd somite causes adjacent wild-type endothelial cells to assume the anomalous ISV pattern of obd embryos. Thus, the launching position of the new sprout and its initial trajectory are directed by inhibitory signals from ventral somites. Zebrafish ISVs are a tractable system for defining the origins and fates of vessels, and for dissecting elements that govern patterns of vessel growth.  相似文献   

19.
Fate maps of chick Hensen's node were generated using DiI and the lineage of individual cells studied by intracellular injection of lysine-rhodamine-dextran (LRD). The cell types contained within the node are organized both spatially and temporally. At the definitive primitive streak stage (Hamburger and Hamilton stage 4), Hensen's node contains presumptive notochord cells mainly in its anterior midline and presumptive somite cells in more lateral regions. Early in development it also contains presumptive endoderm cells. At all stages studied (stages 3-9), some individual cells contribute progeny to more than one of these tissues. The somitic precursors in Hensen's node only contribute to the medial halves of the somites. The lateral halves of the somites are derived from a separate region in the primitive streak, caudal to Hensen's node.  相似文献   

20.
Sonic hedgehog (Shh), produced by the notochord and floor plate, is proposed to function as an inductive and trophic signal that controls somite and neural tube patterning and differentiation. To investigate Shh functions during somite myogenesis in the mouse embryo, we have analyzed the expression of the myogenic determination genes, Myf5 and MyoD, and other regulatory genes in somites of Shh null embryos and in explants of presomitic mesoderm from wild-type and Myf5 null embryos. Our findings establish that Shh has an essential inductive function in the early activation of the myogenic determination genes, Myf5 and MyoD, in the epaxial somite cells that give rise to the progenitors of the deep back muscles. Shh is not required for the activation of Myf5 and MyoD at any of the other sites of myogenesis in the mouse embryo, including the hypaxial dermomyotomal cells that give rise to the abdominal and body wall muscles, or the myogenic progenitor cells that form the limb and head muscles. Shh also functions in somites to establish and maintain the medio-lateral boundaries of epaxial and hypaxial gene expression. Myf5, and not MyoD, is the target of Shh signaling in the epaxial dermomyotome, as MyoD activation by recombinant Shh protein in presomitic mesoderm explants is defective in Myf5 null embryos. In further support of the inductive function of Shh in epaxial myogenesis, we show that Shh is not essential for the survival or the proliferation of epaxial myogenic progenitors. However, Shh is required specifically for the survival of sclerotomal cells in the ventral somite as well as for the survival of ventral and dorsal neural tube cells. We conclude, therefore, that Shh has multiple functions in the somite, including inductive functions in the activation of Myf5, leading to the determination of epaxial dermomyotomal cells to myogenesis, as well as trophic functions in the maintenance of cell survival in the sclerotome and adjacent neural tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号