首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence analyses of the plastid genes atpB and rbcL support an expanded order Malvales. Within this alliance, core Malvales are clearly supported and comprise most genera that have previously been included in Sterculiaceae, Tiliaceae, Bombacaceae, and Malvaceae. Additional well supported malvalean alliances include the bixalean clade (Bixaceae, Diego-dendraceae, and Cochlospermaceae), the cistalean clade (Cistaceae, Dipterocarpaceae, and Sarcolaenaceae) and Thymelaeaceae (including Gonystyloideae and Aquilarioideae). Our results indicate sister-group relationships between (1) Neuradaceae and the cistalean clade; (2) Sphaerosepalaceae and Thymelaeaceae; (3) these two clades (1 and 2); and (4) all these and an alliance comprising the bixalean clade and core Malvales, but this pattern is weakly supported by the bootstrap. The affinities of Muntingiaceae and Petenaea are especially ambiguous, although almost certainly they are Malvales s.l. The traditional delimitation of families within core Malvales is untenable. Instead, we propose to merge Sterculiaceae, Tiliaceae and Bombacaceae with Malvaceae and subdivide this enlarged family Malvaceae into nine subfamilies based on molecular, morphological, and biogeographical data: (1) Byttnerioideae, including tribes Byttnerieae, Lasiopetaleae and Theobromeae (all of which have cucullate petals) and Hermannieae; (2) Grewioideae, including most genera of former Tiliaceae; (3) Tilioideae, monogeneric in our analysis; (4) Helicteroideae, comprising most of the taxa previously included in Helictereae, plus Mansonia, Triplochiton (indicating that apocarpy evolved at least twice within Malvaceae) and possibly Durioneae; (5) Sterculioideae, defined by apetalous, apocarpous, usually unisexual flowers with androgynophores; (6) Brownlowioideae, circumscribed as in previous classifications; (7) Dombeyoideae, expanded to include Burretiodendron, Eriolaena, Pterospermum, and Schoutmia; (8) Bombacoideae, corresponding to former Bombacaceae (without Durioneae) but including Fremontodendreae  相似文献   

2.
Phylogenetic relationships within Malvaceae s.l., a clade that includes the traditional families Bombacaceae, Malvaceae s.str., Sterculiaceae, and Tiliaceae, have become greatly clarified thanks to recent molecular systematic research. In this paper, we use DNA sequences of four plastid regions (atpB, matK, ndhF, and rbcL) to study relationships within Malvadendrina, one of the two major clades of Malvaceae s.l. The four data sets were generally in agreement, but five terminal taxa manifested highly unexpected affinities in the rbcL partition, and the non-coding sequences of the trnK intron were found to provide limited phylogenetic information for resolving relationships at the base of Malvadendrina. The remaining data strongly support the existence of six major clades within Malvadendrina: Brownlowioideae, Dombeyoideae, Helicteroideae, Malvatheca (comprising Bombacoideae and Malvoideae), Sterculioideae, and Tilioideae. These data also resolve the placement of two problematic taxa: Nesogordonia (in Dombeyoideae) and Mortoniodendron (in Tilioideae). The relationships among the six clades are not definitively resolved, but the best-supported topology has Dombeyoideae as sister to the remainder of Malvadendrina (posterior probability PP=80%) and Sterculioideae as sister to Malvatheca (PP=86%). This early branching position of Dombeyoideae is supported by similarities in floral characters between members of that clade and outgroup taxa in Byttnerioideae. Similarly, the sister-group relationship of Sterculioideae and Malvatheca receives support from androecial characteristics, like subsessile or sessile anthers and an absence of staminodes, shared by these two clades.  相似文献   

3.
We report a phylogenetic analysis of “core” Malvales (Tiliaceae, Sterculiaceae, Bombacaceae, and Malvaceae) based on morphological, anatomical, palynological, and chemical features. The results of the analyses lead to the conclusion that Tiliaceae, Sterculiaceae, and Bombacaceae, as variously delimited, are paraphyletic; only the Malvaceae are likely monophyletic. The genera of “core” Malvales form a well-defined clade. Genera of “Tiliaceae” constitute the basal complex within “core” Malvales. The “Sterculiaceae” (most genera)+ “Bombacaceae” + Malvaceae form a clade on the basis of a monadelphous androecium; “Bombacaceae”+ Malvaceae also form a clade, which is diagnosable on the basis of monoloculate anthers. It is clear that the traditional classification, with its arbitrarily delimited evolutionary grades, is unsatisfactory, especially if one seeks to reflect phylogeny accurately. Thus, Malvaceae is redefined to refer to the most recent common ancestor of plants previously considered to be “Tiliaceae,” “Sterculiaceae,” “Bombacaceae,” and Malvaceae, and all of the descendants of that ancestor. This broadly circumscribed Malvaceae can be diagnosed by several presumed synapomorphies, but we draw special attention to the unusual floral nectaries that are composed of densely packed, multicellular, glandular hairs on the sepals (or less commonly on the petals or androgynophore).  相似文献   

4.
分子系统学研究将传统梧桐科与锦葵科、木棉科和椴树科合并为广义锦葵科,并进一步分为9个亚科.然而,9个亚科之间的关系尚未完全明确,且梧桐亚科内的属间关系也未得到解决.为了明确梧桐亚科在锦葵科中的系统发育位置,厘清梧桐亚科内部属间系统发育关系,该研究对锦葵科8个亚科进行取样,共选取55个样本,基于叶绿体基因组数据,采用最大...  相似文献   

5.
Previous molecular phylogenetic analyses have revealed that elements of the former families Malvaceae sensu stricto and Bombacaceae together form a well-supported clade that has been named Malvatheca. Within Malvatheca, two major lineages have been observed; one, Bombacoideae, corresponds approximately to the palmate-leaved Bombacaceae, and the other, Malvoideae, includes the traditional Malvaceae (the mallows or Eumalvoideae). However, the composition of these two groups and their relationships to other elements of Malvatheca remain a source of uncertainty. Sequence data from two plastid regions, ndhF and trnK/matK, from 34 exemplars of Malvatheca and six outgroups were analyzed. Parsimony, likelihood, and Bayesian analyses of the sequence data provided a well-resolved phylogeny except that relationships among five lineages at the base of Malvatheca are poorly resolved. Nonetheless, a 6-bp insertion in matK suggests that Fremontodendreae is sister to the remainder of Malvatheca. Our results suggest that the Malvoideae originated in the Neotropics and that a mangrove taxon dispersed across the Pacific from South America to Australasia and later radiated out of Australasia to give rise to the ca. 1700 living species of Eumalvoideae. Local clock analyses imply that the plastid genome underwent accelerated molecular evolution coincident with the dispersal out of the Americas and again with the radiation into the three major clades of Eumalvoideae.  相似文献   

6.
The order Malvales remains poorly circumscribed, despite its seemingly indisputable core constituents: Bombacaceae, Malvaceae, Sterculiaceae, and Tiliaceae. We conducted a two-step parsimony analysis on 125 rbcL sequences to clarify the composition of Malvales, to determine the relationships of some controversial families, and to identify the placement of the Malvales within Rosidae. We sampled taxa that have been previously suggested to be within, or close to, Malvales (83 sequences), plus additional rosids (26 sequences) and nonrosid eudicots (16 sequences) to provide a broader framework for the analysis. The resulting trees strongly support the monophyly of the core malvalean families, listed above. In addition, these data serve to identify a broader group of taxa that are closely associated with the core families. This expanded malvalean clade is composed of four major subclades: (1) the core families (Bombacaceae, Malvaceae, Sterculiaceae, Tiliaceae); (2) Bixaceae, Cochlospermaceae, and Sphaerosepalaceae (Rhopalocarpaceae); (3) Thymelaeaceae sensu lato (s.l.); and (4) Cistaceae, Dipterocarpaceae s.l., Sarcolaenaceae (Chlaenaceae), and Muntingia. In addition, Neurada (Neuradaceae or Rosaceae) falls in the expanded malvalean clade but not clearly within any of the four major subclades. This expanded malvalean clade is sister to either the expanded capparalean clade of Rodman et al. or the sapindalean clade of Gadek et al. Members of Elaeocarpaceae, hypothesized by most authors as a sister group to the four core malvalean families, are shown to not fall close to these taxa. Also excluded as members of, or sister groups to, the expanded malvalean clade were the families Aextoxicaceae, Barbeyaceae, Cannabinaceae, Cecropiaceae, Dichapetalaceae, Elaeagnaceae, Euphorbiaceae s.l., Huaceae, Lecythidaceae, Moraceae s.l., Pandaceae, Plagiopteraceae, Rhamnaceae, Scytopetalaceae, Ulmaceae, and Urticaceae.  相似文献   

7.
Androecial development and structure as well as floral vasculature of six selected species of Bombacoideae and of several smaller lineages of the Malvatheca clade (Malvaceae s.l.) were studied. All studied taxa share a similar pattern of androecial development: initially, five antepetalous/antetepalous and five alternipetalous/alternitepalous primary androecial primordia develop on a ring wall. Two elongate secondary androecial primordia form on each antepetalous/antetepalous sector. At anthesis the androecium consists of an androecial tube crowned by five androecial lobes. Each of these lobes is the developmental product of an alternipetalous/alternitepalous primary androecial primordium and its two neighbouring antepetalous/antetepalous secondary androecial primordia. The elongate, sessile androecial units are positioned along the lateral margins of the androecial lobes and in the distal part of the androecial tube. Seen in the light of the most recent studies of floral development and phylogeny of the Malvaceae and the Malvales as a whole, our data indicate that i) elongate, sessile androecial units are ancestral in the Malvatheca clade, that ii) an obdiplostemonous floral ground plan is a synapomorphy for the Malvaceae, and that iii) diplostemony is most likely ancestral in the Malvales.  相似文献   

8.
Recent phylogenetic research suggests that Malvaceae s.l. comprises formerly Tiliaceae, Byttneriaceae, Bombacaceae, and Sterculiaceae. Corchoropsis is traditionally included in Tiliaceae or Sterculiaceae and is distributed in China, Korea, and Japan. One to three species have been recognized for this genus. Phylogenetic relationships among the Malvacean taxa have been intensively studied with molecular data, and the evolution of their morphological characteristics has been re-interpreted accordingly. However, no Corchoropsis species have been included for their phylogenetic position. Here, three chloroplast coding regions—rbcL, atpB, and ndhF, from Corchoropsis psilocarpa and Corchoropsis crenata—were amplified and sequenced, then compared with other Malvacean taxa. This analysis of the three plastid gene sequences now places Corchoropsis species in Dombeyoideae, as previously proposed by Takeda (Bull Misc Inform Kew 365, 1912), Tang (Cathaya 4:131–150, 1992), and Bayer and Kubitzki (2003). Within Dombeyoideae, Corchoropsis forms a strongly supported sister relationship with the DombeyaRuizia clade.  相似文献   

9.
10.
11.
A broad comparative analysis reveals that the inflorescences of coreMalvales, familiesSterculiaceae, Tiliaceae, Bombacaceae andMalvaceae, include characteristic repeating units. The basic repeating unit is called bicolor unit (afterTheobroma bicolor, where it was first observed). It is determinate and bears three bracts, one of which is invariably sterile, whereas the others subtend lateral cymes or single flowers. Through the demonstration of intermediate steps in closely related taxa the triad of bracts within a bicolor unit and the trimerous malvalean epicalyx are shown to be homologous. Various possibilities for an origin of the bicolor unit are discussed. Bicolor units are variously arranged to form complete inflorescences. In many taxa they are terminal on modules that comprise two (or fewer) prophylls. These modules may be arranged in elongated anthocladia or condensed sympodia, which in turn may constitute components of higher order inflorescence structures. The presence of the bicolor unit or its derivatives linksSterculiaceae, Tiliaceae, Bombacaceae andMalvaceae. It is absent from all other families included in a broader defined orderMalvales and represents one of the rare morphological synapomorphies of coreMalvales. Furthermore, inflorescence morphology provides characters of systematic significance for various taxa within coreMalvales.  相似文献   

12.
梧桐科一些属的分类位置探讨   总被引:5,自引:1,他引:4  
梧桐科(Sterculiaceae)是锦葵目中的一个多型科,科的特征比较比样化。自从E.P.Ventenat(1830)建立该科以来,对于该科范围和包含的属种数目,各国学者至今尚存在各种不同的看法。作者认为,火桐属(Erythropsis)应当从梧桐属(Firmiana)中分出成为单独的属;午时花属(Pentapetes)不应归入锦葵科(Malvaceae),应当置于梧桐科;田麻属(Corchor  相似文献   

13.
14.
This review deals with the literature survey of the structure and occurrence of unusual and novel fatty acids in minor seed oils belonging to 37-botanical plant families. The plant families include—Anacardiaceae, Apocyanaceae, Araliaceae, Asclepediaceae, Bignoniaceae, Bombacaceae, Celastraceae, Chailletaceae, Compositae, Connaraceae, Coriaraceae, Cruciferae, Eleocarpaceae, Euphorbiaceae, Flacourtiaceae, Labiateae, Lauraceae, Leguminosae, Lythraceae, Malphighiaceae, Malvaceae, Olacaceae, Papaveraceae, Polygonaceae Protaceae, Rosaceae, Rutaceae, Santalaceae, Sapindaceae, Sapotaceae, Simarubiaceae, Sterculiaceae, Tiliaceae, Thymalaceae, Ulmaceae, Umbelliferae and Valerianaceae.  相似文献   

15.
Androecium development and vasculature were studied in nine species of the Adansonieae clade (core Bombacoideae, Malvaceae s.l.). In early androecium development either distinct pentagonal androecial ring walls or five common petal/androecium primordia are present. Ring walls give rise to five antepetalous and five alternipetalous primary androecial primordia. Common primordia divide into peripheral petal primordia and antepetalous primary androecial primordia. Antepetalous primary androecial primordia split anticlinally into ten primordia-halves, on which secondary androecial primordia are initiated in a centrifugal succession. Androecial lobes are formed by fusion of an alternipetalous primary androecial primordium and its two neighbouring antepetalous primary primordia-halves, a pattern that also occurs in other Malvatheca. Later, tertiary androecial primordia are formed by the subdivision of secondary androecial primordia (except in Adansonia and Ceiba). Each tertiary primordium differentiates into a two-locular androecial unit. At anthesis these two-locular androecial units are often present in pairs, corresponding to the two halves of the same secondary androecial primordium. Androecium development and vasculature imply that the alternipetalous androecial sectors have been reduced in Bombacoideae, a tendency that is shared with other subfamilies of Malvaceae.  相似文献   

16.
Seventeen species in the Tiliaceae, Sterculiaceae and Bombacaceae were tested for susceptibility to three virus isolates from naturally infected Cola chlamydantha trees and three from Adansonia digitata trees in Ghana. Seven species of Pseudococcidae were tested as vectors of the six isolates. These studies indicate that the Cola isolates should be classified with cocoa swollen shoot virus and those from Adansonia with cocoa mottle leaf virus.  相似文献   

17.
Recent collections have brought to light the following new species from the states of Tabasco and Oaxaca, Mexico:Byttneria fluvialis (Sterculiaceae) from Tabasco;Bakeridesia amoena (Malvaceae), andTriumfetta calzadae (Tiliaceae) from Oaxaca.  相似文献   

18.
Abstract: The breeding system of Luehea grandiflora (Tiliaceae‐Malvaceae s.l.) was investigated using hand pollinations and fluorescence microscopy studies of pollen tube growth. Although selfed flowers persisted for some 10 days, our study indicates that L. grandiflora is self‐incompatible, with self pollen tube inhibition in the upper style, as occurs in many taxa with homomorphic, gametophytic self‐incompatibility (GSI). L. grandiflora is only the second species reported within the Malvales with homomorphic stylar inhibition. This result is discussed within the context of a report for self‐compatibility in this species, and we also consider the phylogenetic implications for the occurrence of GSI in the family Malvaceae s.l.  相似文献   

19.
Bombacoideae is one out of nine subfamilies of Malvaceae and encompasses 160 tree species. The subfamily is karyotypically characterized by small and numerous chromosomes and is traditionally known by a remarkable inter- and intraspecific chromosome number variation. We conducted a comparative cytogenetic analysis to investigate karyotype diversity and chromosome evolution within Bombacoideae. To achieve this, we performed new chromosome counts, CMA/DAPI double staining, genome size estimations, and localization of 5S and 45S rDNA by fluorescence in situ hybridization for 21 species distributed across the Bombacoideae phylogeny. We performed ancestral states reconstruction analyses to elucidate chromosome evolution and provide insights into the systematics and evolution of Bombacoideae in comparison with other Malvaceae species. Newly generated data on chromosome number on Bombacoideae revealed diploids (Ochroma (2n = 84), Cavanillesia, Pochota, Pseudobombax (2n = 88), and Pachira (2n = 92)) and polyploids (Adansonia digitata (2n = 160) and Eriotheca species (2n = ca. 194 and 2n = 276)). For most species, in situ hybridization revealed karyotype, with two pairs of 45S rDNA sites co-located with CMA+ bands, and 5S rDNA sites in only one chromosome pair. Taken together, our results provide support to the hypothesis of karyotypic stability in Bombacoideae. Only the Pachira s.l. clade displayed some variability in ploidy level, number of CMA+ bands and 45S rDNA sites, and genome size compared to other Bombacoideae clades. The Striated bark clade was characterized by comparatively small genomes and low cytomolecular variability. Karyotypic data were related to biogeographic and species richness patterns of Bombacoideae.  相似文献   

20.
Sacred Giants: Depiction of the Malvaceae Subfamily Bombacoideae on Maya Ceramics in Mexico, Guatemala, and Belize This study categorized and identified plants depicted on Maya ceramics from the Classic Period (250 a.d.–900 a.d.). We chose art objects with a predominance of iconographic images of Malvaceae subfamily Bombacoideae, which are easily identified morphologically and have culinary, medicinal, ceremonial, economic, and cosmological significance to the Maya. Among ten species of Bombacoideae native to the Southern Lowlands region of Central America (Belize, parts of Guatemala, and Mexico), the Maya utilized at least six, which also have Maya names. We observed four or five bombacoid species depicted on Maya ceramics; most images were identifiable to genus. Burial urns and incensarios (incense burners) commonly had images of trunk spines of Ceiba pentandra, the Maya “World Tree.” Flowers of Pseudobombax ellipticum, a plant used to make ceremonial beverages, were most similar to floral images portrayed on vessels, bowls, and plates, although the morphologically similar flowers of Pachira aquatica may also be depicted. Plants representing Quararibea funebris or Q. guatemalteca, which were used during preparation of cacao beverages, were discernable on drinking vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号