首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
The development of long (6-20 m) tree roots was reconstructed from serial transverse sections taken 10-20 cm apart. Measurements of primary xylem diameter showed that the tips of long roots of red maple (Acer rubrum L.) and paper birch (Betula papyrifera Marsh.) are initially small, but they increase in diameter with increasing distance from the stem. A repeating pattern of the width of the first annual ring marks length increments of long roots. The pattern of ring width is paralleled by a pattern of primary xylem diameter. Our interpretation is that primary xylem diameter increases during spring and early summer, stays constant during late summer and decreases in autumn. After injuries to large root tips, new large lateral tips are formed that replace the parent tip. Thus, a single long root is actually formed by a succession of these replacement roots. In a series of sections there may be sudden changes in primary xylem diameter as the successive sections pass from parent root to replacement root at points of injury. These changes in birch are associated with changes in a number of protoxylem poles.  相似文献   

2.
Stenokoleos is a genus for petrified axes from the Mississippian New Albany Shale to which an Upper Devonian occurrence in New York is added. Two orders of branching were known and the plant was thought to be related to coenopterid ferns. The new petrified axes from New York reveal three orders of branching. A pair of rachides emerges from one side of the stem at each node. Their position alternates at successive nodes (distichous). Each rachis bears alternately arranged pinnae. The shape of the xylem strand and the number of protoxylem areas are variable. Traces to the pairs of rachides arise either as two separate strands or as a single strand that is presumed to divide while still within the cortex of the stem. Traces to pinnae are ellipsoid or clepsydroid. Tracheids are scalariform and uni- or biseriate, circular-bordered pitted. Peripheral loops are present in all orders of branches. Protoxylem strands are numerous and maturation is mesarch. Cortex is parenchymatous where it is preserved but outer cortex is missing. Stenokoleos and Reimanniopsis are placed in a new family, Stenokoleaceae. This is classified as Incertae Sedis among Pterophytina in Tracheophyta. It is suggested that the plant is related more closely to the Mississippian pteridosperms Tristichia and Tetrastichia than to the coenopterid ferns.  相似文献   

3.
The phloem of most fossil plants, including that of Sphenophyllum, is very poorly known. Sphenophyllum was a relatively small type of fossil arthrophyte with jointed stems bearing whorls of leaves ranging in form from wedge or fan-shaped to bifid, to linear. The aerial stem systems of the plant exhibited determinate growth involving progressive reduction in the dimensions of the stem primary bodies, fewer leaves per whorl, and smaller and simpler leaves distally. The primary phloem occurs in three areas alternating in position with the arms of the triarch centrally placed primary xylem. Cells of the primary phloem, presumably sieve elements, are axially elongate with horizontal to slightly tapered end walls. In larger stems with abundant secondary xylem and secondary cortex or periderm, a zone of secondary phloem occurs whose structure varies in the three areas opposite the arms of the primary xylem, as opposed to the three areas lying opposite the concave sides of the primary xylem. The axial system of the secondary phloem consists of vertical series of sieve elements with horizontal end walls. In the areas opposite the protoxylem the parenchyma is present as a prominent ray system showing dilation peripherally. Sieve elements in the areas opposite the protoxylem arms have relatively small diameters. In the areas between the protoxylem poles the secondary phloem sieve elements have large diameters and are less obviously in radial files, while the parenchyma resembles that of the secondary xylem in these areas in that it consists of strands of cells extending both radially and tangentially. An actively meristematic vascular cambium has not been found, indicating that this layer changed histologically after the cessation of growth in the determinate aerial stem systems and was replaced by a post-meristematic parenchyma sheath made up of axially elongate parenchyma lacking cells indicative of being either fusiform or ray initials. A phellogen arose early in development in a tissue believed to represent pericycle and produced tissue comparable to phellem externally. Normally, derivatives of the phellogen underwent one division prior to the maturation of the cells. Concentric bands of cells with dark contents apparently represent secretory tissue in the periderm and cell arrangements indicate that a single persistent phellogen was present. Sphenophyllum is compared with other arthrophytes as to phloem structure and is at present the best documented example of a plant with a functionally bifacial vascular cambium in any exclusively non-seed group of vascular plants.  相似文献   

4.
F. B. P. Wooding 《Planta》1969,84(3):235-238
Summary In parenchyma cells grouped around the stem protoxylem in Pinus pinea characteristic wall ingrowths occur. The numerous mitochondria of such cells are very closely associated with the plasmalemma bounding the ingrowths. A functional relationship between this association and salt absorption from the xylem transpiration stream is suggested.  相似文献   

5.
Nucleotide sequences fromrbcL were used to infer relationships of Lophosoriaceae and Hymenophyllopsidaceae. The phylogenetic positions of these two monotypic fern families have been debated, and neither group had been included in recent molecular systematic studies of ferns. Maximum parsimony analysis of our data supported a sister relationship betweenLophosoria andDicksonia, and also betweenHymenophyllopsis andCyathea. Thus, both newly-examined families appear to be part of a previously characterized and well-supported clade of tree ferns. The inferred relationships ofLophosoria are consistent with most (but not all) recent treatments. However,Hymenophyllopsis includes only small delicate plants superficially similar to filmy ferns (Hymenophyllaceae), very different from the large arborescent taxa. Nevertheless, some synapomorphic characteristics are shared with the tree fern clade. Further studies on gametophytes ofHymenophyllopsis are needed to test these hypotheses of relationship.  相似文献   

6.
The epiphytic Bird's Nest Fern (Asplenium nidus complex) has a large basket‐shaped rosette that accumulates leaf litter. We investigated the role of these ferns in supporting invertebrate populations in the primary lowland dipterocarp forest of Danum Valley, Sabah, Malaysia. Ferns were divided into three size classes: large (rosette diameter >60 cm), intermediate (30–60 cm), and small (<30 cm). Seven hectares of forest were surveyed: the canopy had a mean density of 30 large ferns/ha and 20 intermediate ferns/ha. Six large and five intermediate ferns were removed from the crowns of Parashorea tomentella (Dipterocarpaceae) at heights between 39 and 52 m. The largest ferns had fresh weights of ca 200 kg. The mean animal abundance in large and intermediate ferns was 41,000 and 8000, respectively. Termites and ants represented at least 90 percent of the abundance in these ferns. Of die 11 ferns, 4 contained a nest of Hospitalitermes rufus (Nasutitermitinae), while another contained a nest of an undescribed species of Hospitalitermes. An additional 56 small ferns were removed from die low canopy (2–6 m above the forest floor), of which only 1 contained a termite nest (Nasutitermes neoparvus). These results suggest that Bird's Nest Ferns contain ca 0.5 million termites/ha and contribute almost one ton (dry mass) of suspended soil and plant material/ha. Five of the trees containing large ferns were fogged immediately before the removal of die ferns. From these samples we were able to estimate the total number of animals in each tree crown. When each estimate was added to die abundance in each fern, the results suggested that a single large fern may contain from 7 to 93 percent of die total number of invertebrates in die crown. Although these results must be treated with caution because of die small sample size, they have important implications for studies of canopy invertebrates.  相似文献   

7.
Abstract. Thicket-forming ferns are common colonizers of disturbed habitats in the tropics, but little is known about their ecology. The effects of thickets formed by the fern Dicranopteris pectinata on tree seedlings on five landslides in the Luquillo Experimental Forest in northeastern Puerto Rico were both positive and negative. Soil moisture and total soil N were higher under fern thickets than in adjacent open areas and soil bulk density and soil surface temperatures were lower. Germination of seeds of the tree Cecropia schreberiana was higher for seeds sown under fern thickets than for those sown into adjacent open areas. Tree seedlings of Tabebuia hetero-phylla exhibited a threefold reduction in photosynthesis under ferns, probably resulting from a twelvefold reduction of photosynthetic photon flux density. Growth of Tabebuia seedlings was reduced under ferns but the distribution of seedlings of naturally occurring woody plants was not strongly correlated with the presence of fern thickets. Although fern thickets on low-nutrient landslide soils appear to facilitate germination, they inhibit growth of tree seedlings and may, therefore, delay forest development on landslides in Puerto Rico.  相似文献   

8.
The concept of a procambium-cambium continuum was examined in Populus deltoides by following its development in serially sectioned bud and stem tissues. As in other species, the term cambium is used to refer to that part of the continuum associated with the formation of secondary vascular tissues; i.e., with secondary growth. However, that part of the continuum associated with the formation of primary vascular tissues is subdivided to facilitate interpretation of the consecutive stages of primary xylem differentiation. Thus, the procambium as envisioned by other authors is subdivided into procambium, initiating layer, and metacambium, all of which develop acropetally and in complete continuity. The procambium is derived from the residual meristem in the form of acropetally developing strands and traces. The initiating layer is represented by the first, tangentially separated, periclinal divisions that delineate the position of the prospective cambium. The metacambium is a later stage during which additional periclinally dividing cells unite the initiating layer into a tangentially continuous meristem within a trace bundle. After establishment of the initiating layer, the procambial trace is completely phloem dominated. Protoxylem differentiation begins in an originating center at the base of the leaf primordium and it progresses basipetally to form the protoxylem pole. Cells of the initiating layer do not contribute to the formation of either protoxylem or protophloem. However, those cells of the initiating layer directly opposite the protoxylem pole divide precociously and later differentiate to metaxylem, thus forming a radial file of protoxylem-metaxylem elements. Protoxylem elements of lateral traces are longitudinally continuous with the protoxylem of their parent traces, whereas those of a central trace are longitudinally continuous with the metaxylem of its parent trace. Metaxylem is formed later than protoxylem and it is derived from the metacambium. Metaxylem does not form a continuous system with protoxylem of the same trace because of the different temporal and spatial origins of the two kinds of xylem. Rather, metaxylem is longitudinally continuous with secondary xylem of older traces below. An attempt was made to determine the functional significance of the pattern of protoxylem and metaxylem differentiation in relation to primary and secondary plant development.  相似文献   

9.
Medullosa and Sutcliffia specimens from the Paleozoic of North America and Europe are examined to determine the architecture of the cauline vasculature and mode of leaf trace production. Emphasis is placed on the identification and characterization of protoxylem strands and their relationship to leaf trace production. Organization of the primary xylem varies from a single protostele to a dissected stele composed of two to many more or less independent bundles. In Medullosa the bundles of primary xylem are each surrounded by secondary xylem, forming separate segments of vascular tissue (‘steles’ of previous workers). These vascular segments may divide and fuse at different levels in the stem. A definite number of protoxylem strands occur near the periphery of the primary xylem. The protoxylem strands divide at intervals producing protoxylem to the departing leaf traces. Leaf traces thus formed arise from all the vascular segments in a coordinated and predictable way and pass outward through emission areas in the secondary xylem. This type of cauline vascular architecture is compared to that of other seed plants. The vascular system of Medullosa stems is interpreted as a dissected monostele. Sympodial vascular architecture has apparently evolved from a protostele separately within the medullosan pteridosperms.  相似文献   

10.
Perforation plates are reported in aerial and subaerial axes of Psilotum nudum and in aerial axes of Tmesipteris obliqua. In Psilotum, both perforations lacking pit membranes and perforations with pit membrane remnants were observed. Perforation plates in Psilotum may consist wholly of one type or the other. In Tmespteris, perforations have threadlike pit membranes or consist of porose pit membranes. Wide perforations alternating with narrow pits, a conformation observed in various ferns, were observed in Psilotum (subaerial axes). In Psilotum, perforations are more common in metaxylem than in protoxylem; perforations in protoxylem consist of primary wall areas containing small circular porosities or relatively large circular to oval perforations. There are no modifications in the secondary wall framework of protoxylem or metaxylem in Psilotum or Tmesipteris that would permit one to distinguish presence of perforations or perforation plates with light microscopy, and scanning electron microscopy (SEM) is required for demonstration of porose walls or perforations. The tracheary elements of the Psilotaceae studied have no features not also observed in other ferns with SEM.  相似文献   

11.
Equisetum clarnoi is described from four silicified stem fragments and numerous small roots from the Eocene Clarno Chert of Jefferson County, Oregon. Stems are up to 8.0 mm in diam and have sunken stomata arranged vertically in a single line flanking each of the external biangulate stem ridges, features that clearly ally this species with the subgenus Hippochaete. External stem ridges are equal in number to the carinal hypodermal bands. The hypodermis is composed of fibers and has prominent carinal bands up to 0.75 mm long and shorter vallecular bands. Cortical parenchyma cells enclose prominent vallecular canals which are lined by specialized thick-walled parenchyma cells. The double, common endodermis has prominent casparian strips. Vascular bundles are composed of four to seven metaxylem tracheids flanking each side of the phloem and protoxylem tracheids which occur singly on the internal surface of the small carinal canals. Leaf sheaths in cross section have an adaxial fibrous layer and an external or near external fibrous bundle. Roots are up to 2.0 mm in diam and have paired cuboidal epidermal cells from which root hairs arise. The stele of the root is central and shows exarch primary xylem maturation. Equisetum clarnoi most closely resembles the extant Equisetum hyemale var. affine.  相似文献   

12.
Gymnosperm-like stem and frond fragments have been discovered in the same Devonian deposits of West Virginia that yield the most ancient seeds. The vegetative organs exhibit the stem/leaf differentiation and frond structure that are characteristic of seed ferns, but they have a stelar configuration and a protoxylem architecture that are most similar to aneurophytalean progymnosperms. This combination of features supports the hypothesis that aneurophytalean progymnosperms are ancestral to gymnosperms.  相似文献   

13.
Cyathorachis, a genus of Cretaceous tree fern rachises is revised. In addition to the type specimens of the sole species,C. fujiiana Ogura, two specimens collected near the type locality were examined histologically. The histological data being used for the taxonomical comparison were obtained from anatomical studies on the rachises of extant tree ferns. As a result of the study three species are recognized, two of which are new. As a result of this study, it appears that species differentiation of the tree ferns in the late Cretaceous age of Hokkaido was rather high, as it is now in tropical and subtropical regions. Contributions from the Laboratory of Phylogenetic Botany, Chiba University, No. 74.  相似文献   

14.
Gaxiola A  Burrows LE  Coomes DA 《Oecologia》2008,155(2):325-335
Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.  相似文献   

15.
16.
Isoprene emission has been documented and characterized from species in all major groups of vascular plants. We report in our survey that isoprene emission is much more common in mosses and ferns than later divergent land plants but is absent in liverworts and hornworts. The light and temperature responses of isoprene emission from Sphagnum capillifolium (Ehrh.) Hedw. are similar to those of other land plants. Isoprene increases thermotolerance of S. capillifolium to the same extent seen in higher plants as measured by chlorophyll fluorescence. Sphagnum species in a northern Wisconsin bog experienced large temperature fluctuations similar to those reported in tree canopies. Since isoprene has been shown to help plants cope with large, rapid temperature fluctuations, we hypothesize the thermal and correlated dessication stress experienced by early land plants provided the selective pressure for the evolution of light-dependent isoprene emission in the ancestors of modern mosses. As plants radiated into different habitats, this capacity was lost multiple times in favor of other thermal protective mechanisms.  相似文献   

17.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   

18.
The vascular connection between lateral roots and stem in the Ophioglossaceae and in two leptosporangiate fern species was examined. Two types of connections were found: “gradual” connections, which resemble leaf traces in ontogeny and morphology, and “abrupt” connections, which resemble the connections between lateral roots and their parent roots. Gradual root-stem connections occur in the genera Ophioglossum and Helminthostachys and in Woodwardia virginica. They are initiated in shoot apices distal to the level where cauline xylem elements mature. They resemble leaf traces in being provascular (procambial) strands that connect the cauline stele with the future vasculature of lateral appendages. As with leaf traces, gradual connections are part of the provascular and, later, protoxylem continuity between stems and lateral appendages. Gradual connections have many features in common with leaf traces, and the term root trace is applicable to them. The order of radial maturation of the primary xylem in gradual connections varies in different parts of the connections. It is endarch near the intersection with the cauline stele and exarch where the connections intersect root steles. Gradual connections resemble the transition regions of certain seed plants where protoxylem is also continuous from stem to root and the order of maturation is found to change continuously from stem to root. Abrupt connections occur in Botrychium and Osmunda cinnamomea. They develop in shoot apices at levels where cauline xylem is mature or maturing. The mature xylem does not dedifferentiate, so provascular and protoxylem continuity of the kind found in root traces does not occur. Also, reorientation of the order of maturation does not occur in abrupt connections. Xylem connectors are found in the region where radially oriented elements of the connections abut the longitudinally oriented cauline elements. Abrupt connections resemble the connection of secondary roots with their parent root systems since xylem connectors and the lack of continuity are also features found in these vascular systems. The resemblance of the vascular pattern of the fern root trace to the transition region of seed plants suggests that the radicle is more closely comparable to the cladogenous roots of pteridophytes than hitherto supposed.  相似文献   

19.

Background  

Ferns have generally been neglected in studies of chloroplast genomics. Before this study, only one polypod and two basal ferns had their complete chloroplast (cp) genome reported. Tree ferns represent an ancient fern lineage that first occurred in the Late Triassic. In recent phylogenetic analyses, tree ferns were shown to be the sister group of polypods, the most diverse group of living ferns. Availability of cp genome sequence from a tree fern will facilitate interpretation of the evolutionary changes of fern cp genomes. Here we have sequenced the complete cp genome of a scaly tree fern Alsophila spinulosa (Cyatheaceae).  相似文献   

20.
A new genus and species of Cretaceous Cyatheacean tree fern, Heilongjiangcaulis keshanensis gen. et sp. nov., is erected for several permineralized stems collected at the Keshan County in Songliao Basin, Heilongjiang Province, Northeast China. The new taxon is characterized by a dictyostelic, erect stem with dense multicellular scales and surrounded by persistent petiole bases and adventitious roots. The stem contains a central pith lacking medullary bundles, which is surrounded by a dictyostele, and the cortex externally. Each meristele of the dictyostelic ring is enclosed by a sclerenchyma sheath. The pith and cortex are parenchymatous. The proximal petiole bases present a frond trace composed of numerous meristeles, arranged in 1 abaxial and 2 adaxial arcs, with internally projecting bundles on the upper and lateral sides. The feature combination of the new genus is nearly identical to the anatomical structures of modern scaly genera of the Cyatheaceae apart from the absence of medullary bundles. It is interpreted as a primitive representative of early Cyatheaceae, that closely resembles the modern scaly genera, which suggests that in the Cretaceous, the tree ferns in this family were already in possession of most of the anatomical characteristics observed in extant taxa. The fossil records of the stems, petioles, and spores indicate that during the Jurassic and Cretaceous, the Northeastern region of Asia may have been one of the distribution centers of early Cyatheaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号