首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.

Background

The ‘gynodioecy–dioecy pathway’ is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy–dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope

We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females'' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy–dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites'' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy–dioecy pathway.

Conclusions

Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.  相似文献   

2.

Background and Aims

About 6 % of an estimated total of 240 000 species of angiosperms are dioecious. The main precursors of this sexual system are thought to be monoecy and gynodioecy. A previous angiosperm-wide study revealed that many dioecious species have evolved through the monoecy pathway; some case studies and a large body of theoretical research also provide evidence in support of the gynodioecy pathway. If plants have evolved through the gynodioecy pathway, gynodioecious and dioecious species should co-occur in the same genera. However, to date, no large-scale analysis has been conducted to determine the prevalence of the gynodioecy pathway in angiosperms. In this study, this gap in knowledge was addressed by performing an angiosperm-wide survey in order to test for co-occurrence as evidence of the gynodioecy pathway.

Methods

Data from different sources were compiled to obtain (to our knowledge) the largest dataset on gynodioecy available, with 275 genera that include at least one gynodioecious species. This dataset was combined with a dioecy dataset from the literature, and a study was made of how often dioecious and gynodioecious species could be found in the same genera using a contingency table framework.

Key Results

It was found that, overall, angiosperm genera with both gynodioecious and dioecious species occur more frequently than expected, in agreement with the gynodioecy pathway. Importantly, this trend holds when studying different classes separately (or sub-classes, orders and families), suggesting that the gynodioecy pathway is not restricted to a few taxa but may instead be widespread in angiosperms.

Conclusions

This work complements that previously carried out on the monoecy pathway and suggests that gynodioecy is also a common pathway in angiosperms. The results also identify angiosperm families where some (or all) dioecious species may have evolved from gynodioecious precursors. These families could be the targets of future small-scale studies on transitions to dioecy taking phylogeny explicitly into account.  相似文献   

3.
OWENS, S.J., JACKSON, A., MAUNDER, M., RUDALL, P.JOHNSON, M.A.T., 1993. The breeding system of Ramosmania heterophylla– dioecy or heterostyly?Ramosmania heterophylla (Cafe Marron), endemic to Rodrigues, Mauritius, is now almost extinct, since it appears to exist in the wild as a single plant, but has recently been successfully established at Kew by means of vegetative cuttings. Despite plenty of flowers on the Kew plants, attempts to set seed by manual pollination for seed banking purposes have failed. This investigation showed that pollen is viable and that embryo sacs appear fully developed. Lack of seed set is a result of the non-functional stigmas on short styles. The most likely explanation is that the last-known plant is male, although heterostyly or a mutant stylar developmental gene cannot be ruled out. The plant has a chromosome number of 2n= 22.  相似文献   

4.
‘Gynodioecy–dioecy’ is one of the pathways by which dioecy can arise from hermaphroditism. Studies on sex determination and development of gynodioecious systems have focused on temperate and/or annual species. Little is known about the evolutionary dynamics of gynodioecy and dioecy in perennial tropical species, where these systems have more frequently evolved. Maytenus obtusifolia is an abundant species in restingas in southeastern Brazil. The sexual system of M. obtusifolia was investigated by studying the floral structure and reproductive biology. We considered the sexual system as an intermediate step in the pathway gynodioecy-dioecy. The characterization of the hermaphrodite morph was complex, because of a gradient of variation in floral morphology and reproductive characteristics (sizes of the style and stigmatic surface, pollen viability, embryo sacs containing hypertrophied synergids, and fruit set). This variation leads to different proportions of functional male and female flowers among hermaphrodite plants and is responsible for the different levels of reproductive success. Female reproductive success and pollen viability were negatively correlated with the hermaphrodite morph (r = ?0.67). The higher fruiting intensity and fruit/flower ratio of females (41 %) compared to hermaphrodites (2 %) and the fact that female plants produce more and better-quality seeds support the female compensation. We suggest that female sterility may be linked to the set of changes in the carpels. The differences in the quality and quantity of pollen grains of hermaphrodite plants, and the similar individual rates of pollen viability observed for three consecutive flowering events, may indicate a relationship with nuclear cytoplasmic sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号