首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物天然更新过程中种子和幼苗死亡的影响因素   总被引:46,自引:0,他引:46  
植物天然更新包括有种子搬运、种子库动态、种子萌发和幼苗定居等过程。从种子生产到幼苗定居的更新是植物生活史中最为敏感的阶段之一 ,多种因素的影响种子和幼苗的命运。其中包括 :( 1 )动物取食或病原体侵袭。种子在扩散和搬运过程中 ,易被小哺乳动物或无脊椎动物取食。蛀虫也可以使种子失去萌芽能力。病原体感染种子和幼苗 ,容易引起种子和幼苗的死亡。 ( 2 )异质生境的影响。在不同生境中 ,光照条件、土壤水分和化学成分等因子的组合严重影响种子和幼苗的命运。 ( 3 )干扰的影响。小尺度和大尺度的干扰都可以影响到植物更新时种子和幼苗的命运。林窗作为特殊的干扰体系 ,为不同种类植物提供了更新的机会。 ( 4 )繁殖体特征。种子大小、质量和保护色等特征影响种子和幼苗在更新过程中的生存。种子休眠期间 ,由于生理衰老和腐烂的原因使种子失去活力而不能萌发。 ( 5 )密度和距离制约。母株附近由于密度竞争的影响 ,种子和幼苗死亡率都较高。  相似文献   

2.
Knowledge of the seed and seedling ecology of the piñon and juniper woodlands of western North America is essential for understanding both the northward migration and expansion of the woodlands during the Holocene (< 11,500 B.P.), and the accelerated expansion of the woodlands since settlement of the West by Anglo-Americans around 200 years ago. We follow the fates of seeds and seedlings of the different piñon and juniper species within the woodlands from seed development to seedling establishment, and discuss the implications of this information for the past and present expansion of the woodlands. While seed development requires about two and one-half years in pinons, it is species-dependent in junipers and can take one, two, or even three years. Substantial seed losses can occur during seed development due to developmental constraints, and before or after seed maturation as a result of insects, pathogens, or predatory animals. In piñon pines, the primary seed dispersers are scatterhoarding birds (corvids) and rodents that harvest seeds from the trees or after seed fall and cache them in the soil. In contrast, most junipers appear to be dispersed primarily by frugivorous birds and mammals that ingest the seeds and defecate them onto the soil surface. We have recently documented that scatter-hoarding rodents also disperse juniper seeds. Disperser effectiveness, or the contribution a disperser makes to the future reproduction of a plant population, may vary among species of piñons and especially junipers. Piñon seeds are short-lived and exhibit little dormancy, and they probably only germinate the spring following dispersal. Juniper seeds are long-lived and seed dispersal can occur over one or more years. Seed germination can be delayed for several years due to impermeable seed coats, embryo dormancy, or the presence of inhibitors. Seedling establishment of piñon pines is facilitated by nurse plants but, while junipers often establish beneath nurse plants, they are capable of establishing in open environments. In the southwestern United States, higher establishment of juniper occurs in open environments due to more favorable precipitation, and competition may be more important than facilitation in determining establishment. When considering the mechanisms involved in the past and present expansion of the woodlands, short-distance dispersal, local population growth, and long-distance dispersal are all important. Different classes of dispersers, some of which appear to have coevolved with the tree species, appear to be responsible for local (short-distance) vs. long-distance dispersal in pinons and junipers. Because ecotones form the interface between the woodlands and adjacent communities, they can provide valuable information on both the seed dispersal and seedling establishment processes responsible for tree expansion. Disturbance regimes and, recently, the effects of humans on those regimes have major effects on the expansion and contraction of the woodlands. Before Anglo-American settlement, fires occurred as frequently as every 50–100 years throughout much of the woodlands. During this century, fire frequencies have been reduced due to the indirect effects of livestock grazing and the direct effects of removing Native Americans from the ecosystem and implementing active fire-prevention programs. The result has been an increase in tree-dominated successional stages at the expense of grass-dominated stages. Various management techniques, including controlled burning and chaining, have been implemented to reduce tree dominance, but their effects depend largely on the life histories of the tree species and the disturbance characteristics. Several areas relating to the seed and seedling ecology of the piñon and juniper require additional research if we are to truly understand the dynamics of the woodlands.  相似文献   

3.
Salk CF  McMahon SM 《Oecologia》2011,166(2):485-492
Most theories of forest biodiversity focus on the role of seed dispersal and seedling establishment in forest regeneration. In many ecosystems, however, sprouting by damaged stems determines which species occupies a site. Damaged trees can quickly recover from disturbance and out-compete seedlings. Links among species’ traits, environmental conditions and sprouting could offer insight into species’ resilience to changes in climate, land use, and disturbance. Using data for 25 Neotropical tree species at two sites with contrasting rainfall and soil, we tested hypotheses on how four functional traits (seed mass, leaf mass per area, wood density and nitrogen fixation) influence species’ sprouting responses to disturbance and how these relationships are mediated by a tree’s environmental context. Most species sprouted in response to cutting, and many species’ sprouting rates differed significantly between sites. Individual traits showed no direct correlation with sprouting. However, interactions among traits and site variables did affect sprouting rates. Many species showed increased sprouting in the higher-quality site. Most nitrogen-fixing species showed the opposite trend, sprouting more frequently where resources are scarce. This study highlights the use of functional traits as a proxy for life histories, and demonstrates the importance of environmental effects on demography.  相似文献   

4.
Martinez-Ramos  M.  Soto-Castro  A. 《Plant Ecology》1993,107(1):299-318
By comparing seed rain, seedling and sapling community structures we assessed the possible role played by vertebrate seed dispersal as a structuring factor in advanced regeneration of closed-canopied sites in the tropical rain forest of Los Tuxtlas, Mexico. Seed weight, initial morphology of seedlings and species abundance were also analyzed to determine if these traits influenced the probability of establishment in the shade.About half of the seed species falling in five closed forest sites (25×25 m) during one year came from fruiting trees growing within the sites (local seeds) and half from fruiting trees found outside the sites (immigrant seeds). Seeds of liana and upper-canopy species were over-represented among immigrant seeds compared with seeds of understory tree species. This probably reflects the activity of frugivorous arboreal mammals, bats, and birds. Species with immigrant seeds had both a lower abundance and a narrower spatial distribution than locally produced seeds. Therefore, immigrant seeds showed higher diversity values than locally produced seeds.Average seed size and the proportion of epigeous seedlings were similar in local and immigrant species. Under closed-canopied sites, factors affecting community organization seem to operate selectively, favoring the establishment of large-seeded, local abundant species in the advanced regeneration. However, the fact that some saplings of immigrant species were found in the plots suggest that a slow species infiltration may be occurring leading to a slow shift in the advanced regeneration species composition. We propose that the influence of seed dispersal on advanced regeneration structure depends on the disturbance history of the patches where seeds land.  相似文献   

5.
种子重量的生态学研究进展   总被引:14,自引:4,他引:10       下载免费PDF全文
作为植物生活史中的一个关键性特征,种子重量与其它许多植物性状和生态因子有关,种子重量的分异与其它一些植物性状及环境的变化关系在进化生物学上已经成为一个非常有意义的研究内容,且具有一定的实践意义。种子重量被发现与下列的一些植物学和群落学性状有关:植物的生活型、种子的散布能力、种子的散布方式、植物的高度、植物的冠幅、植物的比叶面积、植物的寿命、动物的捕食、植被中植物的数量或多度、土壤中种子的数量或多度、种子的休眠、种子在土壤中的持久性和植物的净初级生产力等,另外生态因子如降雨、温度、坡向、海拔、经度、纬度、光强和干扰等都影响种子的重量。种子的重量被认为是在大量小种子和少量大种子之间的进化折衷,在一定的能量限度内,较大重量的种子一般具有较少的数量,而较小重量的种子一般数量较多,这是种子重量和数量方面具有的一种反向关系。与其它性状相比,很多研究都表明种子重量和植物的生活型的关系密切。没有散布结构或风散布的种子比以动物和水作为散布媒介的种子重量要小。种子重量与捕食的关系现发现有3种格局。种子重量和形状与种子在土壤中的持久性的关系有4种格局。在干旱和阴暗的环境条件下,种子有变大的趋势。大重量种子比小种子赋予幼苗较优势的竞争地位,其原理尚有争论,尚不清楚是否是幼苗阶段的竞争决定了世界上大部分植被类型的物种组成。未来的研究方向主要有以下几个方面:1) 种子重量与植物系统学相结合,探索种子重量的变化规律;2)调查群落三向(纬度、经度和海拔)性的种子重量谱变化规律;3) 群落演替与群落种子重量谱的变化;4) 种子重量与群落中植物个体和种子的数量的关系及机理研究;5) 微生境、微地形如坡向、坡位和林间隙等对种子重量的影响;6) 全球气候变化和种子重量变化的关系。  相似文献   

6.
王宁  刘俊娥  周正朝 《生态学报》2021,41(18):7464-7474
生物土壤结皮(BSC)在陆地生态系统中具有重要的生态地位,尤其是旱地生态系统中,BSC占据了种子植物之间的广阔地面。因此,BSC的发展必然影响种子植物更新过程与植被空间格局;但其作用方式、影响程度等因相关研究涉及多气候要素、土壤类型、BSC组成物种和种子植物物种的差异及其不同组合,导致目前的研究结论存在广泛争议。研究综合论述了BSC改变地表微形态对种子传播过程的影响;BSC改变土壤特性(物理、化学、生物学)对种子萌发和幼苗存活与建植等关键环节的影响;并结合种子形态特征及种子萌发、幼苗建植的性状等,综合分析了BSC对种子传播、种子萌发与幼苗建植等更新过程的潜在影响机理;探讨了目前研究矛盾性结论产生的原因。总体来说,深入研究并全面揭示BSC对种子植物更新过程的影响,应加强学科交叉,将分子生物学、植物生理学、生物化学等微观研究,与遥感、野外生态因子过程监测、控制实验等宏观、中观研究结合,从机理到过程方面动态研究BSC对种子植物更新过程的影响,并引入水文模型、气候模型、种群动态模型等模型预测方法,研究气候变化、各类干扰频发的情景下,BSC对种子传播、萌发及幼苗建植过程的潜在影响,以期促进对BSC与种子植物间相互关系的研究,加深对干旱脆弱生态系统植被发展规律的认识。  相似文献   

7.
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.  相似文献   

8.
Katariina Kiviniemi 《Oikos》2001,94(2):250-262
Theory predicts that life history traits that reduce the impact of environmental variation show patterns of negative covariation (trade‐offs). In plants, seed size, seed dormancy and dispersal (in space) interact to reduce risk in a temporally and spatially variable environment. Dispersal in time and space permits escape from unfavourable conditions, whereas a large seed size may improve establishment under unfavourable conditions. However, large seeds may suffer a high rate of loss due to seed predators. The objective of this study was to examine relationships between seed size, seedling establishment and seed dormancy by combining data from field experiments with information of phylogenetic relationships among 11 species in the subfamily Rosoideae (Rosaceae). The predicted relationship between seed size and seed predation was also examined. Emergence from seed, survival and recruitment of seedlings, effects of seed predators (post‐dispersal predation), and seed dormancy were studied experimentally in the field. All species generated seedlings in the experimental plots. Overall, the emergence of seedlings was promoted by disturbance. Several species possessed seeds that were able to germinate after being buried in the soil column for three years. Despite a small data set (ten phylogenetically independent contrasts), the comparative analysis confirmed an expected positive effect of seed size on establishment ability. The emergence of seedlings increased with seed size. The results did not demonstrate the hypothesised positive association between seed size and predation risk, or negative association between seed size and seed dormancy. However, the contrast analysis showed a significant negative relationship between seed dormancy and survivorship of seedlings, i.e. between quantitative data of dormancy and establishment capacity of the species obtained under natural conditions in the field. When not controlling for phylogeny (without contrasts), the only significant effect was a negative association between seed size and seed dormancy.  相似文献   

9.
Revegetation of degraded arid lands often involves supplementing impoverished seed banks and improving the seedbed, yet these approaches frequently fail. To understand these failures, we tracked the fates of seeds for six shrub species that were broadcast across two contrasting surface disturbances common to the Mojave Desert—sites compacted by concentrated vehicle use and trenched sites where topsoil and subsurface soils were mixed. We evaluated seedbed treatments that enhance soil‐seed contact (tackifier) and create surface roughness while reducing soil bulk density (harrowing). We also explored whether seed harvesting by granivores and seedling suppression by non‐native annuals influence the success of broadcast seeding in revegetating degraded shrublands. Ten weeks after treatments, seeds readily moved off of experimental plots in untreated compacted sites, but seed movements were reduced 32% by tackifier and 55% through harrowing. Harrowing promoted seedling emergence in compacted sites, particularly for the early‐colonizing species Encelia farinosa, but tackifier was largely ineffective. The inherent surface roughness of trenched sites retained three times the number of seeds than compacted sites, but soil mixing during trench development likely altered the suitability of the seedbed thus resulting in poor seedling emergence. Non‐native annuals had little influence on seed fates during our study. In contrast, the prevalence of harvester ants increased seed removal on compacted sites, whereas rodent activity influenced removal on trenched sites. Future success of broadcast seeding in arid lands depends on evaluating disturbance characteristics prior to seeding and selecting appropriate species and seasons for application.  相似文献   

10.
Despite comparatively good rates of pollination and seed production, some populations of the endangered terrestrial orchid Caladenia rigida continue to decline. To determine whether seed quality may be limiting reproductive potential, we assessed seed viability among declining populations of C.?rigida (in the southern part of its distribution) and among populations that are regarded as stable (in the northern part of its distribution). We also compared differences in seed viability to plant traits, population size and habitat characteristics (soil properties, canopy cover, presence of proximate vegetation). Seed capsules from southern populations were significantly smaller, with only 9% of seeds being viable, compared to 36% in capsules from northern populations. Soil phosphorus concentrations differed between regions, but other habitat characteristics did not correlate with seed viability. Using calculations based on seedling recruitment data from other Caladenia species, we predict that seed output is insufficient to ensure the long-term persistence of the smallest C.?rigida populations.  相似文献   

11.
LauraGough 《Ecography》2006,29(1):44-56
In relatively harsh environments such as arctic tundra, abiotic factors have traditionally been considered the primary determinants of community structure, overwhelming any effects of biotic interactions such as competition. Two common low arctic tundra types that differ in soil properties, moist acidic and moist non-acidic tussock tundra (MAT and MNT, respectively), occur in close proximity in northern Alaska. Several plant species occur in both communities with different relative abundance, while others are restricted to one. This study experimentally examined how neighboring vegetation affects germination, survival, and growth of species in these two communities that differ in soil pH, cation availability, and other characteristics. Germination of sown seeds was greater than background levels suggesting seed limitation may restrict recruitment of these clonal, perennial species. Germination of sown seeds was greater at both sites when both mosses and vascular plants had been removed compared to plots with intact vegetation. However, neighbors had almost no effect on survival and growth of adult transplants. Patterns of germination, survival and growth of several species differed depending on the community of origin and the community of destination of the seeds or transplanted adults. For example, transplants of the sedge Eriophorum vaginatum grew better if they were from MAT, and this species germinated better when sown at MNT. Although of relatively short duration (three growing seasons), this study suggests that biotic interactions may affect local species composition by restricting germination and establishment in these two communities, but have less of an effect on adult plants. Not surprisingly, site-specific abiotic conditions also exhibit control over species occurrence and relative abundance. Without disturbance to clear bare ground for recruitment of new individuals, these populations for the most part must rely on clonal growth to persist.  相似文献   

12.
Griffith  Alan B.  Forseth  Irwin N. 《Plant Ecology》2003,167(1):117-125
Aeschynomene virginica is a rare annual plant found in freshwater tidal wetlands of the eastern United States. We hypothesized that standing vegetation and water inundation were two important environmental factors in its population dynamics. To test these hypotheses, we sowed seeds into plots with undisturbed vegetation or plots with all aboveground vegetation removed in 1998 and 1999. Presence/absence of seedlings was noted and seedling survival to reproduction, final size, and seed set were measured throughout both growing seasons. Seedling establishment from germination to the first true leaf stage increased with decreasing water depth. Vegetation removal plots had greater seedling establishment, higher seedling survival, and higher seed set per plant than non-removal plots. In a greenhouse study designed to test the effects of water level on seed germination and seedling establishment, no seedlings established in submerged soils, and seed germination and seedling establishment were lower in waterlogged soil than in wet soil. Physical stress associated with deeper water likely limits the distribution of A. virginica to higher elevations, where seeds that colonize patches with low vegetative cover are more likely to produce reproductive adults that produce more seeds relative to patches with established vegetation. A. virginica appears to be a fugitive species specializing on open habitat patches in tidal wetlands. This species may be dependent on disturbances for population establishment and maintenance.  相似文献   

13.
The paper brings data set of seed reproduction of about 500 wild herbaceous species of Central Europe and presents a number of produced seeds in a new way. Number of seeds — reproductive capacity of a population (RCP) was defined as a number of seeds produced by one species per 1 m2 at its one-hundred-per-cent cover per one season. About 23% of seed weight variability and about 26% of variability in RCP were explainable on a family level. The trade-off between RCP and seed weight was confirmed both within families and also among families. Both characteristics had higher variability on a family level and on lower taxonomic levels than on subclass and class levels. Species with an annual life cycle have a larger number of seeds than perennials. Geophytes and species without lateral spread have a tendency to produce a large amount of relatively weighty seeds in comparison to other life forms, and to species with vegetative lateral spread. Species with seeds dispersed by wind usually have a large number of lightweight seeds. Multivariate analyses confirmed some tendencies of reproductive traits which correspond to the definition of C-, S-, R- strategies by Grime — “verification” of the RCP as ecological trait. The R- strategy was well distinguished from the C- and S- strategies by reproductive traits, whereas C- and S- strategies are very similar to each other. Species with insect pollination agent often correspond to C- strategy, wind agent to S- strategy, and species with self-pollination to R- strategy.  相似文献   

14.
Thermal control of treeline position is mediated by local environmental and ecological factors, making trends in treeline migration difficult to extrapolate geographically. We investigated the ecological dynamics of conifer establishment at treeline in the Mealy Mountains (Labrador, Canada) and the potential for its expansion with climate warming. Available seedbed and tree seedling emergence in the treeline ecotone were monitored, and seeds and seedlings of Picea mariana were planted along an elevational gradient from open-canopy forest through tree islands to alpine tundra. Experimental treatments included passive warming of daytime air, ground disturbance, and vertebrate herbivore exclosures. Responses in seed germination and seedling growth, damage, and mortality were monitored over two growing seasons, and re-surveyed after 5 years. While no tree seedlings were observed growing naturally above the treeline, planted seeds were able to germinate, develop and overwinter, and persist for 4 years in all habitats examined. Disturbance of the seedbed was important for seedling emergence in the forest and tree islands. While temperature enhancement alone had little impact on emergence, even moderate temperature increases had significantly disproportionate effects on emergence of seedlings in the alpine habitat when combined with soil disturbance, indicating that future climate warming could lead to treeline advance if viable seed and suitable substrate for recruitment are available. The positive effect of excluding herbivores suggests that herbivory may be an important filter modifying future species distribution. While seedbed conditions and herbivory would control the rate of individual species advance, the results indicate potential upslope migration of the treeline in the Mealy Mountains, with consequent loss of alpine ecosystems.  相似文献   

15.
刺五加繁殖试验   总被引:8,自引:0,他引:8  
臧润国  祝宁 《生态科学》1996,15(2):38-42
对刺五加(Acanthopanaxsenticosus)繁殖的2个重要器官(根茎和种子)进行了调查与试验。通过对根茎的埋土与扦插试验表明,横埋于土壤中的根茎切段的出苗率高于扦插的根茎切段;用生根粉(ABT)处理过的根茎切段的出苗率高于未经ABT处理的。种子千粒重与大小的调查表明,比较稳定的硬阔叶林与蒙古栎林中刺五加种群产生的种子粒大质优,但数量较少,而较不稳定的山杨林中刺五加种群产生的种子粒小质差,但数量较多。对种子的不同处理方法表明,层积处理的种子出苗率最高,出苗时间也短,种子直播和果实直播的出苗率则明显低于前者,而且出苗时间也长。种子直播的出苗率又高于果实直播  相似文献   

16.
Brazil’s Atlantic Forest biome is severely degraded and fragmented throughout its range. Developing effective techniques to restore pasture and agriculture back to native vegetation is therefore a priority for legal and conservation purposes. In this study, we evaluate the ability of artificial bird perches to enhance the arrival of new seeds and seedling establishment in a degraded, semi-deciduous seasonal portion of the Atlantic Forest in southern Brazil. Specifically, we assess the influence of previous land use and habitat types on the abundance, species richness and ecological traits of bird-dispersed seeds, as well as on seedling establishment. Eight sampling sites were established, each containing one unit with seed traps and restoration plots under artificial perches and one similar unit without the perches. These sites were located in pasture and agriculture, distributed between riparian and sub-montane areas. Monthly sampling was conducted over two years between December 2005 and November 2007, resulting in the evaluation of 25,755 seeds and 56 endozoochoric seed species. The most abundant species were the pioneers Cecropia pachystachya Trécul and Solanum americanum Mill. Experimental units with perches received significantly more seeds than control units. Moreover, seed arrival was higher in sub-montane areas and on former pasture sites. Species richness followed a similar pattern of higher seed arrival, but there was no effect of vegetation type. Ecological characteristics of seeds were associated with land use type: former pastures received more tree seeds and pioneer species than expected by chance. Seedling establishment was very low in all treatments, with only eight seedlings established in perch plots by the end of the experiment. We conclude that despite artificial perches significantly increasing the arrival of endozoochoric seeds onto degraded lands, seedling establishment is drastically limited in these areas, compromising the efficacy of this technique for restoration purposes.  相似文献   

17.
紫茎泽兰土壤种子库特征及其对幼苗的影响   总被引:5,自引:1,他引:4       下载免费PDF全文
研究紫茎泽兰(Eupatorium adenophorum)土壤种子库特征及其对紫茎泽兰种子的萌发、幼苗命运的影响, 在综合治理紫茎泽兰入侵危害及防止紫茎泽兰的继续扩散等方面有着重要的意义。该文在攀枝花紫茎泽兰入侵严重的地区, 通过采集果园、放牧灌丛以及禁牧灌丛3种不同生境紫茎泽兰土壤种子库的样本, 以说明不同干扰程度下紫茎泽兰种子在土壤中的分布状况。通过野外调查并结合盆栽实验, 初步研究了紫茎泽兰土壤种子库基本特征以及光照和种子在土壤中的埋藏深度等对紫茎泽兰幼苗的影响。结果表明: 1)果园、放牧灌丛和禁牧灌丛等3种干扰程度不同生境的深层种子量占总种子量的比例分别为56.44%、46.96%和24.86% (p=0.006), 这说明土壤深层种子量大小与干扰成正比, 干扰越大, 深层次紫茎泽兰种子量占总种子量的比重越大。2)播种在0、1和5 cm深度的种子萌发率分别为64.67%、22.67%和13.33%, 即种子埋藏越深, 萌发率越低, 不同层次种子萌发率差异极显著(p=0.00); 幼苗死亡率分别为27.95%、0和0, 表层种子萌发的幼苗有较高的死亡率, 而由埋藏在深层的种子萌发的幼苗没有死亡, 土壤表层发芽的幼苗与不同埋藏深度种子萌发的幼苗之间死亡率差异极显著(p=0.00)。3)在无遮蔽、半遮蔽和全遮蔽3种不同情况下, 紫茎泽兰幼苗的死亡率分别为72.15%、30.38%和4.87%, 定居率分别为6.66%、33.99%和46.67%, 即遮蔽程度越高, 死亡率越低, 定居率越高, 不同处理之间死亡率和定居率差异均极显著(p=0.00)。研究结果暗示, 强光可能是导致紫茎泽兰幼苗死亡的重要原因, 人类活动的干扰可能导致更多的紫茎泽兰种子进入土壤深层, 从而改变了紫茎泽兰土壤种子库的结构。由于土壤深层种子比表层种子具有更强的抵抗强光照射等不良环境因子影响的能力, 所萌发的幼苗成活率高, 表明其具有更高的繁殖效率, 因此人类活动干扰是紫茎泽兰入侵后难以根除的原因之一。  相似文献   

18.

Habitat conversion is one of the major threats for biodiversity conservation and viability of natural populations. Thus, habitat disturbance alters distinct ecological processes, such as plant reproductive success and diaspore fate. In this study, we determined the effects of seasonally tropical dry forests (STDFs) conversion by anthropogenic disturbance by assessing diaspore fate of Enterolobium contortisiliquum. We compared 20 adult trees present in a STDFs preserved area and 20 adult trees present in a human-converted area. In general, diaspore fates from both areas were similar, i.e., there was no difference in the reproductive success of trees in STDFs and human-converted area. Habitat disturbance did not affect the length or width of fruits; only fruit thickness was larger in trees of STDFs habitat. None of the biometric seed measures differed between different habitat conditions. Likewise, the number of undamaged seeds, aborted seeds, pre-dispersal predated seeds, and seed production were independent of habitat conditions. Besides, we did not observe any effect of habitat disturbance on germination percentage. However, seeds from preserved STDFs germinated faster than seeds from the human-converted area. Even though the effects of human-modified habitats on the diaspore fate have already been studied, tree species exhibit different responses to habitat conversion regarding seed predation, seed dispersal, seed germination, and seedling establishment. Overall, our results show that habitat disturbance does not affect the diaspore fate of E. contortisiliquum. This study also highlights the importance of remnants trees in converted landscapes as the population’s connectors which maintain plant–animal mutualistic and antagonistic interactions that mitigate the effects of habitat disturbance.

  相似文献   

19.

Non-native earthworms can alter ecosystems by modifying soil structure, depredating seeds and seedlings, and consuming soil organic matter, yet the initial responses of plant communities to earthworm invasions remain poorly understood. We assessed the effect of non-native earthworms on seedling survival during germination and after establishment using six native and six non-native plant species grown from seed in single- and multi-species experimental mesocosms. We examined the extent to which earthworms (1) influenced seedling survival, (2) selectively depredated native versus non-native plants, (3) impacted establishment based on seed size and/or root morphology, and (4) shaped community assembly. The effect of earthworms on seedling survival varied temporally and among species but inconsistently with respect to species origin. Differences in seed/seedling survival translated to changes in community assembly. Earthworms tended to reduce species abundance, richness, evenness, and diversity in multi-species mesocosms and led to the divergence of communities by treatment. In general, species with large seeds and fibrous roots dominated communities with earthworms present, whereas species with small seeds and taproots only persisted in multi-species mesocosms without earthworms. Our findings suggest that earthworms act as ecological filters in the early stages of invasion to shape community composition based on plant morphological traits.

  相似文献   

20.
  • Polyploidy (the state of having more than two genome copies) is widely distributed in flowering plants and can vary within species, with polyploid races often associated with broad ecological tolerances. Polyploidy may influence within‐species variation in seed development, germination and establishment. We hypothesized that interactions between polyploidy and the seed developmental environment would affect subsequent dormancy, germination and early growth traits, particularly in stressful environments.
  • Using seeds developed in a common garden under ambient and warmed conditions, we conducted germination trials under drought and temperature stress, and monitored the subsequent growth of seedlings. The study species, Themeda triandra, is a widespread, keystone, Australian native grass and a known polyploid complex.
  • Tetraploid plants produced heavier, more viable seeds than diploids. Tetraploids were significantly more dormant than diploids, regardless of seed developmental environment. Non‐dormant tetraploids were more sensitive to germination stress compared to non‐dormant diploids. Finally, tetraploid seedlings were larger and grew faster than diploids, usually when maternal plants were exposed to developmental temperatures atypical to the source environment.
  • Seed and seedling traits suggest tetraploids are generally better adapted to stressful environments than diploids. Because tetraploid seeds of T. triandra are more dormant they are less likely to germinate under stress, and when they do germinate, seedling growth is rapid and independent of seed developmental environment. These novel results demonstrate that polyploidy, sometimes in interaction with developmental environment and possibly also asexuality, can have within‐species variation in seed and seedling traits that increase fitness in stressful environments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号