首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollination biology of 41 plants species of 21 families blooming in the forest understory was investigated in a lowland mixed diplerocarp forest in Lambir Hills National Park, Sarawak. Among these species, 29 species (71%) were pollinated by bees, four (10%) by nectariniid birds, three by small dipterans, and others by moths, butterflies, syrphid flies, wasps, and beetles. The 29 bee-pollinated species consisted of five distinct pollination guilds: ten species pollinated by medium traplining bees (two Amegilla species), nine by small traplining bees (three halictid and a xylocopine species), two by stingless bees and beetles, seven by stingless bees, and one by megachilid bees. The bees constituting the first two guilds were shade-loving, swiftly flying, long-tongued trapliners. Proboscis lengths of these pollinators correlated with flower depth of the host plant. Pollination systems in the forest understory were distinguished from that in the canopy by the prevalence of specific interactions, the number of traplining solitary bees, and lack of pollination systems by mass-recruiting eusocial bees, large Xylocopa bees, thrips, bats, and wind. These characteristics are largely similar between the Palaeotropics and the Neotropics through convergence of nectarivorous birds (spiderhunters vs. hummingbirds) and traplining bees (Amegilla vs. euglossine bees).  相似文献   

2.
A multivariate search for pollination syndromes among penstemons   总被引:4,自引:0,他引:4  
The seeming ubiquity of spatio-temporal variation in pollination regime suggests that flowers ought to be adapted to a wide range of pollinators, yet many comparative biologists perceive that in groups with complex flowers there is considerable specialization onto pollination syndromes. Statistical documentation of such syndromes has been presented for very few groups of flowers. Accordingly, we measured, for 49 species of Penstemon and close relatives, both the morphology of the flowers and visitation by pollinators. We describe the mechanics of pollination for representative species. Ordinations show a distinct difference between hummingbird-pollinated species and hymenopteran-pollinated species. Flower color is particularly good at separating hummingbird- from hymenopteran-flowers. Other characters are also correlated with this dichotomy. Within the hymenopteran-pollinated species, there are additional relationships between floral morphology and the size of the principal pollinators. Flowers frequented by large bees, such as Xylocopa , have large open vestibules and relatively short floral tubes. Flowers frequented by smaller bees, such as Osmia , have long narrow floral tubes. Unlike nectar-collecting bees, pollen-collecting bees tend to be attracted to flowers of the hummingbird syndrome. The overarching pattern was that syndrome characterizations were successful at predicting pollination by hummingbirds versus Hymenoptera, two types of animals that are profoundly different, but less successful at predicting visitation by one kind of bee versus another.  相似文献   

3.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

4.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

5.
According to the concept of pollination syndromes, floral traits reflect specialisation to a particular pollinator or set of pollinators. However, the reproductive biology of endemic, and often specialised, plants may require increased attention as climate change accelerates worldwide. Species of Roscoea endemic to the Himalayan region have striking orchid-like flowers with long corolla tubes, suggesting pollination by long-tongued insects. Until now, the reproductive biology of species of Roscoea has been poorly documented. We investigated the floral biology, breeding system and pollination ecology of R. cautleoides and R. humeana, from Hengduan Mountains, a global biodiversity hotspot in southwest China. We also tested whether floral longevity increases pollination success. Pollination experiments showed that the two species were self-compatible and depended on insects for fruit production. Over several flowering seasons we did not observe any potential pollinators with long tongues that matched the corolla tube visiting flowers in centres of distribution. The principal pollinators observed were pollen-collecting generalist bees, with low visitation frequencies. In general, members of the ginger family are characterised by short-lived (usually 1 day) flowers, but flowers of R. cautleoides and R. humeana last 8 and 6 days, respectively. Removing stigmas decreased fruit set in both study populations. Our results suggest that the original pollinators may have been long-tongued insects that are now absent from the Chinese Himalayas because habitats have responded to climate change. However, long-lived and self-compatible flowers, coupled with the presence of generalist pollinators, are traits that have allowed these gingers to reproduce and continue to persist in the alpine habitats.  相似文献   

6.
卢涛  凌少军  任明迅 《广西植物》2019,39(8):1007-1015
泛热带分布的苦苣苔科(Gesneriaceae)在我国南方具有极高的物种丰富度与特有率,花部特征变化丰富,是研究物种形成与适应演化的代表类群。镜像花(mirror-image flowers)是极为特化的传粉系统,在苦苣苔科中出现了较多的不同类型,可能与苦苣苔科物种多样性形成与维持有关。该研究总结与分析了苦苣苔科镜像花的类型多样性以及系统分布与适应演化等,讨论了镜像花对苦苣苔科物种形成与维持的积极意义。结果表明:镜像花仅分布在亚洲和非洲的苦苣苔亚科(Didymocarpoideae)的7个属,在历史上就至少发生了5次独立起源。长冠苣苔属(Rhabdothamnopsis)、南洋苣苔属(Henckelia)及长蒴苣苔属(Didymocarpus)镜像花的花柱与可育雄蕊分别向左、右两侧偏转,形成互补镜像花;蛛毛苣苔属(Paraboea)、喜鹊苣苔属(Ornithoboea)、非洲堇属(Saintpaulia)镜像花缺乏与花柱对应侧偏的可育雄蕊(非互补镜像花);而海角苣苔属(Streptocarpus)直立堇兰亚属(subg.Streptocarpella Engler)则同时出现了互补、非互补镜像花。不同于其他被子植物(离瓣花、缺乏花冠筒),苦苣苔科中的镜像花大多伴随着明显的花冠筒、内藏的雄蕊、合生的花药,以非互补镜像花为主;传粉者以小型的无垫蜂(Amegilla spp.)和熊蜂(Bombus spp.)为主。这些特殊的花部综合征与特化的传粉机制,提高了传粉精确性,可能促进了传粉隔离与物种适应辐射。今后的一个研究重点应通过分子系统发育方法,进一步揭示苦苣苔亚科互补与非互补镜像花的进化顺序及其在物种分化与长距离扩散过程中的可能作用。  相似文献   

7.
The considerable floral diversity present in the cactus family has often been associated with the specificity of its pollinators. However, many cactus pollination systems are generalized as their flowers are pollinated by a wide spectrum of animals. For example, cactus species with white flowers, nocturnal anthesis and extended floral cycles would present generalized pollination systems in which both nocturnal and diurnal visitors could be effective pollinators. In this article, we tested this hypothesis by studying the pollination biology of Echinopsis schickendantzii, an Andean cactus with sphingophilous flowers. In addition, we evaluated whether the cactus’s pollination system is complementary or redundant regarding the relative contributions of nocturnal and diurnal pollinators. Specifically, we studied the floral cycle, the reproductive system and the pollination effectiveness of floral visitors. The flowers of E. schickendantzii are self-incompatible; they opened at crepuscule and have an extended floral cycle. Moths were frequent visitors at night, whereas bees were frequent visitors during the day; both were effective pollinators of the cactus. Our results indicated that the flowers of this species present phenotypic, functional and ecological generalization, and their fruit set is determined by the contributions of both pollinator functional groups, i.e., they have complementary pollination systems. These results support the hypothesis that cacti in the extra-tropical deserts of South America have generalized pollination systems.  相似文献   

8.
We report on flowering phenology, floral morphology, pollinators, and nectar for eight species and a putative natural hybrid belonging to Agarista, Gaultheria and Gaylussacia that occur syntopically in a montane area. The campanulate to tubular flowers of eight out of nine Ericaceae taxa are primarily pollinated by either hummingbirds or bees. Flowering overlaps in all species but slight differences of floral shape, colour, and nectar characterize pollination by each pollinator group. Differences in floral traits are not large enough to exclude secondary pollinators. Thus, either the main pollinators of a species belonging to its syndrome, or secondary pollinators of a species belonging to different syndromes, may allow for inter-specific crosses.  相似文献   

9.
马先蒿属花冠形态的多样性与传粉式样的关系   总被引:8,自引:0,他引:8  
马先蒿属(Pediculais)是有花植物中花冠形态多样化最为集中的属。该属主要的传粉者是熊蜂属(Bormbus)昆虫;在北美,熊蜂和蜂鸟是马先蒿植物一些种类有效的传粉者;也发现壁蜂(Osmia)为其传粉。不同的传粉机制要求某一特定的取食式样储藏和释放花粉。本文讨论了花冠类型的进化趋势与传粉式样和花粉形态的关系。传粉者的选择压力是决定花冠多样化的重要因素之一;花冠类型与传粉者和传粉行为紧密相关。马先蒿植物和传粉者的相互依赖与其花冠类型、功能和物候互相适应,但花冠类型与花粉形态两者之间似乎没有明显的一一对应关系。通过北美、日本和喜马拉雅不同地理分布马先蒿种类的比较研究表明,具有相同花冠类型的种类有着相同的传粉方式,花冠形态与传粉式样存在紧密的协同进化关系。  相似文献   

10.
腐生植物无叶美冠兰食源性欺骗传粉研究   总被引:1,自引:0,他引:1  
无叶美冠兰是一种典型的腐生兰科植物,为揭示该物种的自然传粉机制,拓展对兰科植物生殖特性的认识,在广西雅长兰科植物国家级自然保护区对其开展了传粉生态学观测研究。结果表明:无叶美冠兰花朵具备高度自交亲和能力,但不存在自动自花授粉机制,必须依赖外部传粉媒介把花粉送到柱头,实现有效传粉;绿彩带蜂是无叶美冠兰唯一有效传粉昆虫;传粉昆虫与花朵在与传粉功能相关的关键性状在形态上良好拟合;绿彩带蜂的访花活动主要发生在3个阶段:8.6%发生在9:00~11:30,80.2%发生在11:30~14:00,11.2%发生在14:00~15:30;花朵在中午强烈的阳光直射下挥发出香甜的气味。无叶美冠兰花朵主要通过挥发极具诱惑力的香甜气味和唇瓣上黄色的蜜导来诱导绿彩带蜂进入花朵中觅食,传粉昆虫与花朵在与传粉功能相关的关键性状在形态上良好拟合促成有效传粉,绿彩带蜂在整个传粉过程没有获得报酬,是食源性欺骗传粉机制。  相似文献   

11.
The floral traits of plants with specialized pollination systems both facilitate the primary pollinator and restrict other potential pollinators. To explore interactions between pollinators and floral traits of the genus Burmeistera, I filmed floral visitors and measured pollen deposition for 10 species in six cloud forest sites throughout northern Ecuador. Nine species were primarily bat-pollinated (84-100% of pollen transfer); another (B. rubrosepala) was exclusively hummingbird-pollinated. According to a principal components analysis of 11 floral measurements, flowers of B. rubrosepala were morphologically distinct. Floral traits of all species closely matched traditional ornithophilous and chiropterophilous pollination syndromes; flowers of B. rubrosepala were bright red, lacked odor, opened in the afternoon, and had narrow corolla apertures and flexible pedicels, which positioned them below the foliage. Flowers of the bat-pollinated species were dull-colored, emitted odor, opened in the evening, and had wide apertures and rigid pedicels, which positioned them beyond the foliage. Aperture width appeared most critical to restricting pollination; hummingbirds visited wide flowers without contacting the reproductive parts, and bats did not visit the narrow flowers of B. rubrosepala. Aperture width may impose an adaptive trade-off that favors the high degree of specialization in the genus. Other floral measurements were highly variable amongst bat-pollinated species, including stigma exsertion, calyx lobe morphology, and pedicel length. Because multiple species of Burmeistera often coexist, such morphological diversity may reduce pollen competition by encouraging pollinator fidelity and/or spatially partitioning pollinator's bodies.  相似文献   

12.
The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E.?terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America.  相似文献   

13.
Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean‐centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved 13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird‐ and bat‐pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species‐rich clades.  相似文献   

14.
Oil-bee/oil-flower mutualism evolved through multiple gains and losses of the ability to produce floral oil in plants and to collect it in bees. Around 2000 plant species are known to produce floral oils that are collected by roughly 450 bee species, which use them for the construction of nests and for the larval food. The Plantaginaceae contain several Neotropical species that produce floral oils, the main reward offered by these plants. In the genera Angelonia, Basistemon, Monopera and Monttea, mainly associated with Centris bees, the floral oil is produced in trichomes that are located in the inner corolla. The pollinators of a few species in this neotropical clade of Plantaginaceae are known, and the role of flower morphology as well as the requirements from pollinators and the role of other groups of bees in the pollination of these flowers remains unclear. In this paper we provide a list of the flower visitors of seven Plantaginaceae species (six Angelonia species and Basistemon silvaticus) analyzing their behavior to highlight the legitimate pollinators and illustrating little known aspects of flower morphology and oil-collecting apparatuses of the bees. Two general morphological patterns were observed in the Angelonia flowers: deep corolla tube with short lobes, and short corolla tube with long lobes. Corolla tubes of different length result in pollen adherence to different parts of the insect body. The six Angelonia species and B. silvaticus flowers were visited by 25 oil-collecting bee species (10 Centris, 11 Tapinotaspidini and 4 Tetrapedia species), the majority acting as legitimate visitors. The flowers were also visited by illegitimate bee pollinators, which collected pollen but do not transfer it to the female organ. Specialized collectors of Plantaginaceae floral oils present modifications on the first pair of legs, mainly in the basitarsi but also extended to the tarsomeres. The new records of Tapinotaspidini and Centridini species acting as specialized pollinators of Plantaginaceae suggest that there is a geographic variation in the pollinators of the same plant species, and that the evolutionary scenario of the historical relationships between oil-collecting bees and floral oil producing plants is more complex than previously considered.  相似文献   

15.
The floral and pollination biology of three closely related species,Tricyrtis flava, T. nana andT. ohsumiensis, were comparatively investigated. The primary pollinator wasBombus diversus in all the three species observed, andAmegilla sp. also acted forT. ohsumiensis. The flowers ofT. flava andT. ohsumiensis bloom for two days and are protandrous. Thus autogramy seems to be prevented in these species when the larger bees forage on them, though geitonogamy may also occur. On the other hand,T. nana appears to be a primarily self-pollinating species. The flowers of this species open only during one day and are homogamy. The stigmata seem to receive much pollen of their own flower by the visit of bumblebees. Moreover, many flowers ofT. nana fruited without any visit of pollinators.T. nana has many features characterizing the autogamous derivatives.  相似文献   

16.
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.  相似文献   

17.
Chrysophyllum (Chrysophylloideae, Chrysophylleae) is the second largest genus in the Sapotaceae. Studies of pollination ecology in this genus are non-existent, although there are records of entomophily for this family. Considering the lack of detailed studies on pollination ecology and sexual systems in Chrysophyllum species, we investigate the floral morphology and biology and floral visitors of Chrysophyllum marginatum to verify which sexual system is present in the studied population and whether flowers of this species are visited and pollinated by different insect groups. The population of C. marginatum has weak and cryptic gynomonoecy because the plants produce a low percentage of functionally pistillate flowers (4.2%) and these flowers appear to be perfect flowers (hermaphrode). Flowers of C. marginatum are phenotypically, ecologically and functionally generalist because: (a) they are actinomorphic, open and not restrictive in terms of access to floral resources; (b) they are visited by 26 species of insects that are potential pollinators; and (c) among these species several groups can be effective pollinators, mainly bees and flies, according to the most effective pollinator principle. We consider bees and flies to be the main pollinator group of C. marginatum, due to their high visitation rate, richness and intrafloral visiting behavior, and because they especially forage among plant individuals and are able to promote xenogamy. Nectaries were found in the ovary base and osmophores in the petal margins, as floral attractants. For Chrysophyllum, this is the first record of gynomonoecy and for the family this is considered the second record. Chrysophyllum marginatum has generalist and entomophilous pollination, as recorded in other Sapotaceae Neotropical species.  相似文献   

18.
Eschweilera nana is pollinated by a guild of pollinators consisting of mostly bees. Effective pollinators are large bees able to force their way into the closed androecium to access nectar. The morphology of the flowers diminishes self pollination and promotes cross-pollination. Although many pollinators make diurnal visits to the flowers, fruit set was very low in comparison with the number of flowers produced. Breeding system tests yielded only two fruits, one produced by xenogamy and another one in the control test. The results of this study are consistent with studies of other Cerrado plants pollinated by guilds of insects and support the conclusion of other pollination studies of Lecythidaceae that fruit set is low in comparison with the high numbers of flowers produced.  相似文献   

19.
The role of pollinators in floral divergence has long attracted the attention of evolutionary biologists. Although abundant studies have reported the effect of pollinators on flower‐shape variation and plant speciation, the influence of pollinators on plant species differentiation during rapid radiations and the specific consequences of shifts among similar pollinators are not well understood. Here, we evaluate the association between pollinators and floral morphology in a closely related and recently diversifying clade of Linaria species (sect. Supinae subsect. Supinae). Our approach combined pollinator observations, functional floral morphometric measures and phylogenetic comparative analyses. The fauna visiting Linaria species was determined by extensive surveys and categorized by a modularity algorithm, and the size and shape of flowers were analysed by means of standard and geometric morphometric measures. Standard measures failed to find relationships between the sizes of representative pollinators and flowers. However, discriminant function analyses of geometric morphometric data revealed that pollination niches are finer predictors of flower morphologies in Linaria if compared with phylogenetic relationships. Species with the most restrictive flowers displayed the most slender spurs and were pollinated by bees with larger proboscides. These restrictive flower shapes likely appeared more than once during the evolutionary history of the study group. We show that floral variation can be driven by shifts between pollinators that have been traditionally included in a single functional group, and discuss the consequences of such transitions for plant species differentiation during rapid radiations.  相似文献   

20.
Traditionally, plant–pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino‐Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC‐MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species‐specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant–pollinator interactions in these Asian Buddleja species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号