首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
2.
3.
Ion pairs in alpha helices   总被引:6,自引:0,他引:6  
A survey of 47 globular proteins was made to determine the probability of occurrence of ion pairs separated by 1,2,3,... and 8 residues in the alpha helices. As a control, the probability of occurrence of like charged pairs was also determined. The survey showed that ion pairs of the type i,i +/- 3 and i, i +/- 4 are the most predominant. Such a preference was not observed for like charged pairs. The observed frequency of ion pairs is significantly greater than their expected frequency. The normalized frequencies of occurrence of the ion pairs were also found to increase generally with the helix length. These results indicate that the ion pairs may contribute to the stability of solvent-exposed alpha helices. Since the stabilization of protein secondary structure enhances the stability of protein tertiary structure, these results may throw light on the mechanism of protein folding.  相似文献   

4.
The hydration patterns around the RNA Watson-Crick and non-Watson-Crick base pairs in crystals are analyzed and described. The results indicate that (i) the base pair hydration is mostly "in-plane"; (ii) eight hydration sites surround the Watson-Crick G-C and A-U base pairs, with five in the deep and three in the shallow groove, an observation which extends the characteristic isostericity of Watson-Crick pairs; (iii) while the hydration around G-C base pairs is well defined, the hydration around A-U base pairs is more diffuse; (iv) the hydration sites close to the phosphate groups are the best defined and the most recurrent ones; (v) a string of water molecules links the two shallow groove 2'-hydroxyl groups, and (vi) the water molecules fit into notches, the size and accessibility of which are almost as important as the number and strength of the hydrophilic groups lining the cavity. Residence times of water molecules at specific hydration sites, inferred from molecular dynamics simulations, are discussed in the light of present data.  相似文献   

5.
6.
B L Gaffney  R A Jones 《Biochemistry》1989,28(14):5881-5889
A set of 10 non-self-complementary nonadeoxyribonucleoside octaphosphates, d(GGTTXTTGG) and d(CCAAYAACC), where X and Y are A, C, G, T, or O6MeG, has been synthesized by a large-scale, automated, phosphoramidite procedure. Purification was effected by reversed-phase HPLC, and the base composition was verified by analytical HPLC after enzymatic degradation to the constituent deoxynucleosides. This set of molecules was designed to allow evaluation of the nearest-neighbor dependence of each base pair. The thermal stability, expressed as Tmax, of each duplex containing one of the O6MeG base pairs, a Watson-Crick pair, or one of the mismatches possible with this set of molecules was determined over a concentration range of 5.7-200 microM. From these data the delta H degree, delta S degree, and delta G degree of each combination were calculated. In general, the relative thermal stabilities observed for the O6-methylguanine combinations confirm our previous findings that the most stable base pair is formed with cytosine rather than thymine and that all O6MeG pairs are much weaker than Watson-Crick base pairs [Kuzmich, S., Marky, L. A., & Jones, R. A. (1983) Nucleic Acids Res. 11, 3393-3404; Gaffney, B. L., Marky, L. A., & Jones, R. A. (1984) Biochemistry 23, 5686-5691]. Moreover, the nine combinations containing O6-methylguanine are all of similar thermal stability, cover a much smaller range in Tmax than do the mismatches, and show little sequence dependence.  相似文献   

7.
Geometries, interaction energies and vibrational frequencies of base pairs, nucleoside pairs and nucleotide pairs were studied by ab initio Hartree-Fock (HF) method using MINI-1 basis set and empirical Cornell et al. force field (AMBER 4.1). A good agreement was found between HF/MINI-1 and AMBER results. In addition, both methods provide reasonable agreement with available high-level ab initio data. Finally, AMBER potential was used to determine the structure, energetics and vibrational frequencies of B-DNA pairs of trinucleotides. Stabilization energies of clusters are lowered when passing from base pairs to nucleoside pairs, nucleotide pairs and to pairs of trinucleotides. The lowest vibrations of base pairs and nucleoside pairs correspond to intermolecular motions of bases, specifically to buckle and propeller motions. In the case of pairs of larger subunits the lowest vibrations are of intramolecular nature (rotation around glycosidic bond, sugar and phosphate vibration). The spectra of these clusters became more complicated and quasi-degenerate. Intermolecular charge transfer between bases in H-bonded and stacked pairs is negligible, while a significant intramolecular charge transfer was observed.  相似文献   

8.
DNA sequencing with arbitrary primer pairs   总被引:8,自引:0,他引:8  
  相似文献   

9.
Ion pairs contribute to several functions including the activity of catalytic triads, fusion of viral membranes, stability in thermophilic proteins and solvent-protein interactions. Furthermore, they have the ability to affect the stability of protein structures and are also a part of the forces that act to hold monomers together. This paper deals with the possible ion pair combinations and networks in 25% and 90% non-redundant protein chains. Different types of ion pairs present in various secondary structural elements are analysed. The ion pairs existing between different subunits of multisubunit protein structures are also computed and the results of various analyses are presented in detail. The protein structures used in the analysis are solved using X-ray crystallography, whose resolution is better than or equal to 1.5 A and R-factor better than or equal to 20%. This study can, therefore, be useful for analyses of many protein functions. It also provides insights into the better understanding of the architecture of protein structure.  相似文献   

10.
Rank tests for censored matched pairs   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号