首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Mammals with more rapid and agile locomotion have larger semicircular canals relative to body mass than species that move more slowly. Measurements of semicircular canals in extant mammals with known locomotor behaviours can provide a basis for testing hypotheses about locomotion in fossil primates that is independent of postcranial remains, and a means of reconstructing locomotor behaviour in species known only from cranial material. Semicircular canal radii were measured using ultra high resolution X-ray CT data for 9 stem primates (“plesiadapiforms”; n = 11), 7 adapoids (n = 12), 4 omomyoids (n = 5), and the possible omomyoid Rooneyia viejaensis (n = 1). These were compared with a modern sample (210 species including 91 primates) with known locomotor behaviours. The predicted locomotor agilities for extinct primates generally follow expectations based on known postcrania for those taxa. “Plesiadapiforms” and adapids have relatively small semicircular canals, suggesting they practiced less agile locomotion than other fossil primates in the sample, which is consistent with reconstructions of them as less specialized for leaping. The derived notharctid adapoids (excluding Cantius) and all omomyoids sampled have relatively larger semicircular canals, suggesting that they were more agile, with Microchoerus in particular being reconstructed as having had very jerky locomotion with relatively high magnitude accelerations of the head. Rooneyia viejaensis is reconstructed as having been similarly agile to omomyids and derived notharctid adapoids, which suggests that when postcranial material is found for this species it will exhibit features for some leaping behaviour, or for a locomotor mode requiring a similar degree of agility.  相似文献   

2.
Differential bacterial counts were made on the intestinal and caecal contents of chickens after inoculation with a standard dose of 320 000 freshly sporulated oocysts of Eimeria brunetti.  相似文献   

3.
4.
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts.  相似文献   

5.
6.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

7.
mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the posterior pole, whereas giant mRNA is localized to the anterior pole of the oocyte; orthodenticle1 (otd1) is localized to both the anterior and posterior poles. The abundance of differentially localized mRNAs during Nasonia oogenesis provided a unique opportunity to study the different mechanisms involved in mRNA localization. Through pharmacological disruption of the microtubule network, we found that both anterior otd1 and giant, as well as posterior caudal mRNA localization was microtubule-dependent. Conversely, posterior otd1 and nanos mRNA localized correctly to the posterior upon microtubule disruption. However, actin is important in anchoring these two posteriorly localized mRNAs to the oosome, the structure containing the pole plasm. Moreover, we find that knocking down the functions of the genes tudor and Bicaudal-D mimics disruption of microtubules, suggesting that tudor's function in Nasonia is different from flies, where it is involved in formation of the pole plasm.  相似文献   

8.
Vascular Streak Dieback (VSD) disease of cacao (Theobroma cacao) in Southeast Asia and Melanesia is caused by a basidiomycete (Ceratobasidiales) fungus Oncobasidium theobromae (syn. =Thanatephorus theobromae). The most characteristic symptoms of the disease are green-spotted leaf chlorosis or, commonly since about 2004, necrotic blotches, followed by senescence of leaves beginning on the second or third flush behind the shoot apex, and blackening of infected xylem in the vascular traces at the leaf scars resulting from the abscission of infected leaves. Eventually the shoot apex is killed and infected branches die. In susceptible cacao the fungus may grow through the xylem down into the main stem and kill a mature cacao tree. Infections in the stem of young plants prior to the formation of the first 3-4 lateral branches usually kill the plant. Basidiospores released from corticioid basidiomata developed on leaf scars or along cracks in the main vein of infected leaves infect young leaves. The pathogen commonly infects cacao but there are rare reports from avocado. As both crops are introduced to the region, the pathogen is suspected to occur asymptomatically in native vegetation. The pathogen is readily isolated but cultures cannot be maintained. In this study, DNA was extracted from pure cultures of O. theobromae obtained from infected cacao plants sampled from Indonesia. The internal transcribed spacer region (ITS), consisting of ITS1, 5.8S ribosomal RNA and ITS2, and a portion of nuclear large subunit (LSU) were sequenced. Phylogenetic analysis of ITS sequences placed O. theobromae sister to Ceratobasidium anastomosis groups AG-A, AG-Bo, and AG-K with high posterior probability. Therefore the new combination Ceratobasidium theobromae is proposed. A PCR-based protocol was developed to detect and identify C. theobromae in plant tissue of cacao enabling early detection of the pathogen in plants. A second species of Ceratobasidium, Ceratobasidium ramicola, identified through ITS sequence analysis, was isolated from VSD-affected cacao plants in Java, and is widespread in diseased cacao collected from Indonesia.  相似文献   

9.
10.
An identification key for 20 common strand-forming indoor wood decay fungi is given. The key is based on observations of material from affected buildings and on wood samples that have been incubated in the laboratory. The key is with macro- and microscopic photographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号