首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here kinetic analysis and identification of the two cyclase domains in a bifunctional diterpene cyclase, Phaeosphaeria ent-kaurene synthase (FCPS/KS). Kinetics of a recombinant FCPS/KS protein indicated that the affinity for copalyl diphosphate is higher than that for geranylgeranyl diphosphate (GGDP). ent-Kaurene production from GGDP by FCPS/KS was enhanced by the addition of a plant ent-kaurene synthase (KS) but not by plant CDP synthase (CPS), suggesting that the rate of ent-kaurene production of FCPS/KS may be limited by the KS activity. Site-directed mutagenesis of aspartate-rich motifs in FCPS/KS indicated that the (318)DVDD motif near the N terminus and the (656)DEFFE motif near the C terminus may be part of the active site for the CPS and KS reactions, respectively. The other aspartate-rich (132)DDVLD motif near the N terminus is thought to be involved in both reactions. Functional analysis of the N- and C-terminal truncated mutants revealed that a N-terminal 59-kDa polypeptide catalyzed the CPS reaction and a C-terminal 66-kDa polypeptide showed KS activity. A 101-kDa polypeptide lacking the first 43 amino acids of the N terminus reduced KS activity severely without CPS activity. These results indicate that there are two separate interacting domains in the 106-kDa polypeptide of FCPS/KS.  相似文献   

2.
ent-Kaurene is a tetracyclic diterpene hydrocarbon and a biosynthetic intermediate of the plant hormone gibberellins. In flowering plants, ent-kaurene is biosynthesized from geranylgeranyl diphosphate (GGDP) by two distinct cyclases, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Recently, the moss Physcomitrella patens ent-kaurene biosynthetic gene was cloned and functionally characterized. The bifunctional ent-kaurene synthase [P. patens CPS/KS (PpCPS/KS)] produces both ent-kaurene and 16α-hydroxy-ent-kaurane from GGDP via ent-copalyl diphosphate. Here, we cloned and analyzed the function of a cDNA encoding bifunctional ent-kaurene synthase from the liverwort Jungermannia subulata [J. subulata CPS/KS (JsCPS/KS)]. JsCPS/KS catalyzes the cyclization reaction of GGDP to produce ent-kaurene but not 16α-hydroxy-ent-kaurane, even though the PpCPS/KS (881 amino acids) and JsCPS/KS (886 amino acids) sequences share 60% identity. To determine the regions and amino acids involved in 16α-hydroxy-ent-kaurane formation, we analyzed the enzymic functions of JsCPS/KS and PpCPS/KS chimeric proteins. When the C-terminal region of PpCPS/KS was exchanged with the JsCPS/KS C-terminal region, the chimeric cyclases produced only ent-kaurene. The replacement of PpCPS/KS Ala710 with Met or Phe produced a JsCPS/KS-type cyclase that converted GGDP to ent-kaurene as the sole product. In contrast, replacing Ala710 with Gly, Cys or Ser did not affect the PpCPS/KS product profile as much as replacement of Cys of JsCPS/KS by Ala. Thus, the hydrophobicity and size of the side chain residue at the PpCPS/KS amino acid 710 is responsible for quenching the ent-kauranyl cation by the addition of a water molecule.  相似文献   

3.
ent-Kaurene is a tetracyclic hydrocarbon precursor for gibberellins (GAs) in plants and fungi. To address whether fungal GA biosynthesis enzymes function in plants, we generated transgenic Arabidopsis plants overexpressing ent-kaurene synthase (GfCPS/KS) from a GA-producing fungus Gibberella fujikuroi. GfCPS/KS catalyzes a two-step reaction corresponding to ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) activities in plants. When GfCPS/KS was overexpressed and targeted to plastids, a range of GA-deficient phenotypes of the ga1-3 and ga2-1 mutants (defective in CPS and KS, respectively) were restored to wild type. Unexpectedly, the transgenic lines overproducing GfCPS/KS emitted the GA precursor ent-kaurene into the headspace besides its accumulation in the plant body. When co-cultivated with the ent-kaurene overproducers in a closed environment, the airborne ent-kaurene was able to fully complement the dwarf phenotype of ga1-3 and ga2-1 mutants, but not that of the ga3-1 mutant (defective in ent-kaurene oxidase). These results suggest that ent-kaurene may be efficiently metabolized into bioactive GAs in Arabidopsis when supplied as a volatile. We also provide evidence that ent-kaurene is released in the headspace of wild-type Chamaecyparis obtusa and Cryptomeria japonica plants, suggesting the occurrence of this hydrocarbon GA precursor as a volatile in nature.  相似文献   

4.
Stevia rebaudiana Bertoni leaves accumulate a mixture of at least eight different glycosides derived from the tetracyclic diterpene steviol. These natural products taste intensely sweet and have similar biosynthetic origins to those of gibberellic acid (GA). The initial steps leading to the formation of GA result from the two-step cyclization of geranylgeranyl diphosphate (GGDP) to (-)-kaurene via the action of two terpene cyclases (-)-copalyl diphosphate synthase (CPS) and (-)-kaurene synthase (KS). Steviol biosynthesis probably uses the same mechanism although the genes and enzymes from S. rebaudiana that are involved in the cyclization of GGDP have not been characterized. We have isolated both the CPS and KS genes from S. rebaudiana and found that recombinant CPS and KS were catalytically active, suggesting that the CPS and KS genes participate in steviol biosynthesis. The genes coding for CPS and KS are usually present in single copies in most plant species and their expression is normally low and limited to rapidly growing tissues. The KS gene has been duplicated in the S. rebaudiana genome and both the KS and CPS genes are highly expressed in mature leaves, a pattern opposite to that found with GA biosynthesis. This pattern may, at least in part, lead to temporal and spatial separation of GA and steviol biosynthesis and probably helps to prevent over-expression from interfering with normal GA metabolism. Our results show that CPS and KS are part of the steviol glycoside biosynthetic pathway and that Stevia rebaudiana has recruited two genes to secondary metabolism from a highly regulated pathway involved in hormone biosynthesis.  相似文献   

5.
The plant growth hormone gibberellin (GA) is important for many aspects of plant growth and development. Although most genes encoding enzymes at each step of the GA biosynthetic pathway have been cloned, their regulation is less well understood. To assess how up-regulation of early steps affects the biosynthetic pathway overall, we have examined transgenic Arabidopsis plants that overexpress either AtCPS or AtKS or both. These genes encode the enzymes ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase, which catalyze the first two committed steps in GA biosynthesis. We find that both CPS and CPS/ent-kaurene synthase overexpressors have greatly increased levels of the early intermediates ent-kaurene and ent-kaurenoic acid, but a lesser increase of later metabolites. These overexpression lines do not exhibit any GA overdose morphology and have wild-type levels of bioactive GAs. Our data show that CPS is limiting for ent-kaurene production and suggest that conversion of ent-kaurenoic acid to GA12 by ent-kaurenoic acid oxidase may be an important rate-limiting step for production of bioactive GA. These results demonstrate the ability of plants to maintain GA homeostasis despite large changes in accumulation of early intermediates in the biosynthetic pathway.  相似文献   

6.
7.
Some plant terpenes such as sterols and carotenes are part of primary metabolism and found essentially in all plants. However, the majority of the terpenes found in plants are classified as 'secondary' compounds, those chemicals whose synthesis has evolved in plants as a result of selection for increased fitness via better adaptation to the local ecological niche of each species. Thousands of such terpenes have been found in the plant kingdom, but each species is capable of synthesizing only a small fraction of this total. In plants, a family of terpene synthases (TPSs) is responsible for the synthesis of the various terpene molecules from two isomeric 5-carbon precursor 'building blocks', leading to 5-carbon isoprene, 10-carbon monoterpenes, 15-carbon sesquiterpenes and 20-carbon diterpenes. The bryophyte Physcomitrella patens has a single TPS gene, copalyl synthase/kaurene synthase (CPS/KS), encoding a bifunctional enzyme producing ent-kaurene, which is a precursor of gibberellins. The genome of the lycophyte Selaginella moellendorffii contains 18 TPS genes, and the genomes of some model angiosperms and gymnosperms contain 40-152 TPS genes, not all of them functional and most of the functional ones having lost activity in either the CPS- or KS-type domains. TPS genes are generally divided into seven clades, with some plant lineages having a majority of their TPS genes in one or two clades, indicating lineage-specific expansion of specific types of genes. Evolutionary plasticity is evident in the TPS family, with closely related enzymes differing in their product profiles, subcellular localization, or the in planta substrates they use.  相似文献   

8.
9.
Cyclic diterpenoids are commonly biosynthesized from geranylgeranyl diphosphate (GGDP) through the formation of carbon skeletons by specific cyclases and subsequent chemical modifications, such as oxidation, reduction, methylation, and glucosidation. A variety of diterpenoids are produced in higher plants and fungi. Rice produces four classes of diterpene phytoalexins, phytocassanes A to E, oryzalexins A to F, oryzalexin S, and momilactones A and B. The six diterpene cyclase genes involved in the biosynthesis of these phytoalexins were identified and characterized. Fusicoccin A was produced by the phytopathogenic Phomopsis amygdali and served as a plant H(+)-ATPase activator. A PaFS, encoding a fungal diterpene synthase responsible for fusicoccin biosynthesis, was isolated. The PaFS is an unusual chimeric diterpene synthase that possesses not only terpene cyclase activity (the formation of fusicoccadiene, a biosynthetic precursor of fusicoccin A), but also prenyltransferase activity (the formation of GGDP). Thus, we identified a unique multifunctional diterpene synthase family in fungi.  相似文献   

10.
11.
The two-step cyclization reaction of ent -kaurene synthesis from geranylgeranyl diphosphate is the first committed step in the biosynthetic pathway of the plant hormone gibberellin. Recent molecular cloning and characterization of the genes encoding the two corresponding enzymes, copalyl diphosphate synthase (CPS) and ent -kau-rene synthase (KS), have demonstrated that ent -kaurene synthesis is localized in the plastids and is highly regulated in specific tissues and cell types during plant development. In addition to occurring in actively growing tissues, ent -kaurene synthesis also takes place in fully expanded leaves. Therefore mature leaves may produce gibberellin intermediates or bioactive gibberellins for transport to responsive tissues. DNA sequence analyses have revealed a conserved aspartate-rich motif, D(I/V)DDTA among CPS and other protonation-initiated terpene cyclases, while KS contains a highly conserved DDXXD motif which was proposed to function as a divalent metal ion-diphos-phate complex binding site in ionization-initiated terpene cyclases and prenyltrans-ferases.  相似文献   

12.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.  相似文献   

13.
14.
The plant hormone, gibberellin (GA), regulates plant growth and development. It was first isolated as a superelongation-promoting diterpenoid from the fungus, Gibberella fujikuroi. G. fujikuroi uses different GA biosynthetic intermediates from those in plants to produce GA3. Another class of GA-producing fungus, Phaeosphaeria sp. L487, synthesizes GA1 by using the same intermediates as those in plants. A molecular analysis of GA biosynthesis in Phaeosphaeria sp. has revealed that diterpene cyclase and cytochrome P450 monooxygenases were involved in the plant-like biosynthesis of GA1. Fungal ent-kaurene synthase is a bifunctional cyclase. Subsequent oxidation steps are catalyzed by P450s, leading to biologically active GA1. GA biosynthesis in plants is divided into three steps involving soluble enzymes and membrane-bound cytochrome P450. The activation of plant GAs is catalyzed by soluble 2-oxoglutarate-dependent dioxygenases, which is in contrast to the catalysis of fungal GA biosynthesis. This difference suggests that the origin of fungal GA biosynthesis is evolutionally independent of that in plants.  相似文献   

15.
Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and multidimensional (13)C NMR analyses of completely (13)C-labeled compound are powerful methods for biosynthetic studies.  相似文献   

16.
Two diterpene biosynthesis gene clusters in the fusicoccin-producing fungus, Phomopsis amygdali, were identified by genome walking from PaGGS1 and PaGGS4 which encode the geranylgeranyl diphosphate (GGDP) synthases. The diterpene cyclase-like genes, PaDC1 and PaDC2, were respectively located proximal to PaGGS1 and PaGGS4. The amino acid sequences of these two enzymes were similar to those of fungal labdane-related diterpene cyclases. Recombinant PaDC1 converted GGDP mainly into phyllocladan-16 alpha-ol via (+)-copalyl diphosphate (CDP) and trace amounts of several labdane-related hydrocarbons which had been identified from the P. amygdali F6 mycelia. Since phyllocladan-16 alpha-ol had not been identified in P. amygdali F6 mycelia, we isolated phyllocladan-16 alpha-ol from the mycelia. Recombinant PaDC2 converted GGDP into (+)-CDP. Furthermore, we isolated the novel diterpenoid, phyllocladan-11 alpha,16 alpha,18-triol, which is a possible metabolite of phyllocladan-16 alpha-ol in the mycelia. We propose that genome walking offers a useful strategy for the discovery of novel natural products in fungi.  相似文献   

17.
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA(4). The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3' consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.  相似文献   

18.
The moss Physcomitrella patens produces both ent-kaurene and ent-kaurenoic acid, which are intermediates of gibberellin biosynthesis in flowering plants. The CYP701 superfamily of cytochrome P450s functions as ent-kaurene oxidases in the biosynthesis of ent-kaurenoic acid. A candidate gene encoding ent-kaurene oxidase in P. patens, CYP701B1, was cloned and heterologously expressed in yeast to examine enzyme activities in vitro. The recombinant CYP701B1 protein catalyzed the oxidation reaction from ent-kaurene to ent-kaurenoic acid. CYP701B1 activity was highly resistant to the ent-kaurene oxidase inhibitor uniconazole-P (IC(50) 64 μM), even though the activity of Arabidopsis ent-kaurene oxidase (CYP701A3) was sensitive (IC(50) 0.26 μM).  相似文献   

19.
Jiang C  Schommer CK  Kim SY  Suh DY 《Phytochemistry》2006,67(23):2531-2540
Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes from bryophytes. Here we report the cloning and characterization of CHS from the moss, Physcomitrella patens. Taking advantage of the available P. patens EST sequences, a CHS (PpCHS) was cloned from the gametophores of P. patens, and heterologously expressed in Escherichia coli. PpCHS exhibited similar kinetic properties and substrate preference profile to those of higher plant CHS. p-Coumaroyl-CoA was the most preferred substrate, suggesting that PpCHS is a naringenin chalcone producing CHS. Consistent with the evolutionary position of the moss, phylogenetic analysis placed PpCHS at the base of the plant CHS clade, next to the microorganism CHS-like gene products. Therefore, PpCHS likely represents a modern day version of one of the oldest CHSs that appeared on earth. Further, sequence analysis of the P. patens EST and genome databases revealed the presence of a CHS multigene family in the moss as well as the 3'-end heterogeneity of a CHS gene. Of the 19 putative CHS genes, 10 genes are expressed and have corresponding ESTs in the databases. A possibility of the functional divergence of the multiple CHS genes in the moss is discussed.  相似文献   

20.
The coding region of the farnesyldiphosphate synthase (FDP synthase) gene from Saccharomyces cerevisiae has been inserted into a pBin19 vector, downstream of the cauliflower mosaic virus (CaMV) 35S promoter, in order to allow its expression in the genome of a higher plant, Nicotiana tabacum. We have produced transgenic tobacco in which the expression of the foreign gene leads to functional FDP synthase activity. In these transgenic plants, total FDP synthase-specific activity is increased 12-fold compared to controls. This increase of FDP synthase activity has been correlated to a clear increase of both sterol and carotenoid biosynthesis. This heterologous expression is also related to an increased resistance of transformed plants to R172117, a specific inhibitor of FDP synthase, and to sterol biosynthesis inhibitors such as flusilazol and fenpropimorph.Abbreviations: AP, Annick Petit; BAP, benzylaminopurine; CaMV, cauliflower mosaic virus; CTAB, cetyltrimethylammonium bromide; DMAEDP, dimethylamino ethyl diphosphate; DMADP, dimethylallyl diphosphate; DTT, dithiothreitol; ERG12, mevalonate kinase yeast gene; ERG20, FDP synthase yeast gene; FDP, farnesyl diphosphate; GGDP, geranylgeranyl diphosphate; GDP, geranyl diphosphate; IDP, isopentenyl diphosphate; LB, Luria Bertani; MS, Murashige and Skoog; NAA, Naphtaleneacetic acid; PVP, polyvinyl pyrrolidone; SBI, sterol biosynthesis inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号