首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
自世界工业革命以来,化石燃料的大量使用以及人类对自然环境的过度破坏,致使大气CO2浓度不断升高.研究大气CO2浓度升高介导的农业生态系统内植物、植食性昆虫及其天敌的适应机制,对于阐明气候变化下农业害虫爆发危害规律,指导防控与减排具有重要意义.本文综述了大气CO2浓度升高对农业生态系统中植物、植食性昆虫及天敌的影响,主要包括:1)相关研究方法的改进;2)大气CO2浓度升高介导的寄主植物营养和次生代谢物质的变化;3)大气CO2浓度升高对以植物为食的昆虫的个体生长发育、种群数量、行为的影响;4)天敌昆虫的生物学及捕食量与寄生率变化.最后对今后的研究方向进行了展望.  相似文献   

2.
自世界工业革命以来,化石燃料的大量使用以及人类对自然环境的过度破坏,致使大气CO2浓度不断升高.研究大气CO2浓度升高介导的农业生态系统内植物、植食性昆虫及其天敌的适应机制,对于阐明气候变化下农业害虫爆发危害规律,指导防控与减排具有重要意义.本文综述了大气CO2浓度升高对农业生态系统中植物、植食性昆虫及天敌的影响,主要包括:1)相关研究方法的改进;2)大气CO2浓度升高介导的寄主植物营养和次生代谢物质的变化;3)大气CO2浓度升高对以植物为食的昆虫的个体生长发育、种群数量、行为的影响;4)天敌昆虫的生物学及捕食量与寄生率变化.最后对今后的研究方向进行了展望.  相似文献   

3.
大气二氧化碳(CO2)和臭氧(O3)浓度升高是全球气候变化的主要特征之一。土壤胞外酶作为维持土壤生态系统服务功能的重要参与者,其活性对于大气CO2和O3浓度升高的响应特征及驱动机制研究,以及应对并缓解未来全球气候变化具有重要意义。本研究采用开顶式气室(OTCs)分别模拟大气CO2浓度升高(环境大气+200μmol·mol-1,eCO2)、大气O3浓度升高(环境大气+0.04μmol·mol-1,eO3)及其交互处理(环境大气+200μmol·mol-1 CO2+0.04μmol·mol-1 O3,eCO2+eO3),探究水稻根际土壤胞外酶活性对大气CO2和O3浓度升高的响应。结果表明:与对照(环境...  相似文献   

4.
化石燃料的燃烧和城市化进程的加快导致大气中二氧化碳(CO2)和臭氧(O3)浓度日益升高, 大气气体浓度的变化会对植物个体和陆地生态系统结构与功能产生影响。CO2浓度升高增加了陆地生态系统碳汇能力, 而O3导致作物减产和生态系统固碳损失。自由空气中气体浓度增加(FACE)系统是最接近自然的一种模拟大气气体浓度增加对生态系统影响的研究平台, 已广泛应用于各种生态系统, 为理解陆地生态系统生态过程对全球变化的响应及评估未来情景的生态风险提供了重要科学依据。该文从FACE技术特点出发, 介绍了国内外建成的大型CO2/O3-FACE系统, 分析了FACE系统的不同布气方式在不同生态系统研究过程中的优点与缺点, 概述了全球FACE运行的现状和取得的主要成果, 并指出了FACE系统存在的主要问题和前沿研究方向。  相似文献   

5.
张蕊  赵钰  何红波  张旭东 《生态学杂志》2017,28(7):2379-2388
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

6.
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

7.
简要综述了近年来国内外在大气CO2浓度增加对微量气体交换影响方面的研究进展.首先介绍了有关大气CO2浓度增加的研究技术和方法,比较了目前两种常用技术开顶箱(OTC)和开放式空气CO2增加(FACE)方法的优缺点,然后着重阐述了用OTC和FACE研究陆地生态系统CH4、N2O、CO2等微量气体的地气交换对大气CO2浓度增加的响应.综合现有的资料表明,大气CO2浓度增加,会促进绿色植物生物量增加,同时改变生物质的C/N比,降低有机质的分解速率,增强了陆地生态系统对大气CO2的固持作用;大气CO2浓度增加会提高产甲烷菌的活性和影响CH4的排放过程,有可能导致湿地生态系统CH4的排放增加;大气CO2浓度增加对N2O排放影响的研究较少,且尚无一致的结论.另外,对于其他微量气体,尚没有相关研究报道.鉴于此,今后应加强大气CO2浓度增加的微量气体地气交换响应研究.  相似文献   

8.
在FACE(free-aircarbondioxideenrichment)平台上,采用静态暗箱气相色谱法观测研究了大气CO2浓度增加对稻田CH4和N2O排放的影响.结果表明,在150和250kgN·hm-2两种氮肥水平下大气CO2浓度增加200μmol·mol-1均明显促进水稻生长,水稻生物量积累.大气CO2浓度增加对150和250kgN·hm-2两种氮肥水平下稻田CH4排放均无显著影响,并简要分析了与现有文献报道结果不一致的原因.大气CO2浓度增加也未导致150和250kgN·hm-2两种氮肥水平下稻田N2O排放的明显变化,与大多数研究结果一致.  相似文献   

9.
为了给全球变化背景下的竹林经营应对策略提供理论依据,运用开顶式同化箱(OTCs)模拟4个大气O3浓度,分别为环境背景大气(40~45 nl·L-1)、降低1/2(22~25 nl·L-1)、倍增1倍(92~106 nl·L-1)和倍增2倍(142~160 nl·L-1),研究分析四季竹(Oligostachyum lubricum(Wen) King f)对大气O3胁迫的光合生理响应规律.结果表明:随着大气O3浓度的升高,四季竹叶片光合色素含量呈降低趋势,倍增1倍处理的大气O3浓度是显著变化的节点;大气O3浓度变化对四季竹Pn日变化影响复杂,环境背景大气、倍增2倍处理呈"单峰"曲线,而降低1/2、倍增1倍处理呈"双峰"曲线.对Tr日变化无明显影响,各处理均呈"单峰"曲线;大气O3浓度较环境背景大气升高或降低,四季竹的光合生理响应都表现为伤害效应.当大气O3浓度倍增1倍及以上,对四季竹会造成严重的伤害,表现为叶片光合色素降解或合成受阻,水分利用效率降低,光合作用能力明显下降.大气O3胁迫对四季竹光合作用的影响表现为非气孔因素限制.  相似文献   

10.
探讨大气CO2浓度和水分变化对3种典型绿肥植物光合性能及水分利用效率的影响,可为未来气候变化情形下草地生态系统适应性管理提供理论支持。本试验利用可精准控制CO2浓度的人工气候室,设置400(自然大气)和800 μmol·mol-1(倍增)两个CO2浓度,80%土壤田间持水量(FC)(充分灌水对照)、55%~60%FC(轻度水分亏缺)、35%~40%FC(中度水分亏缺)、<35%FC(重度水分亏缺)4个水分梯度,研究CO2浓度增加和水分亏缺对甘蓝型油菜、白三叶和紫花苜蓿叶绿素含量、气体交换参数及水分利用效率(WUE)的影响。结果表明: 同一CO2浓度下,与充分灌水对照相比,当土壤水分<40%FC时,3种植物的叶绿素含量和气体交换参数均显著降低;土壤水分为55%~60%FC时,3种植物的叶绿素总含量无显著变化,而白三叶和紫花苜蓿的光合速率(Pn)、蒸腾速率(Tr)降低了6%~25%,但WUE无显著性差异。与大气CO2浓度相比,CO2浓度倍增使充分灌水处理下甘蓝型油菜的Pn显著降低了21.5%,而显著增加了轻度水分亏缺下3种植物的Pn,且增加了中度水分亏缺下甘蓝型油菜和紫花苜蓿的Pn,但只对重度水分亏缺下紫花苜蓿的Pn有所改善;CO2浓度倍增显著增加了白三叶和紫花苜蓿在所有水分处理下的WUE,但只增加了甘蓝型油菜在轻度水分亏缺下的WUE。CO2浓度和水分的交互作用对3种植物的Pn均有显著影响,但仅对甘蓝型油菜的WUE有显著影响。综上,3种植物对大气CO2浓度倍增和水分亏缺的响应存在明显差异,CO2浓度升高能改善轻度水分亏缺对3种植物光合性能和WUE的不利影响,但只改善了重度水分亏缺下紫花苜蓿的光合性能。  相似文献   

11.
综述了国内外生物源挥发性有机化合物 (Biologicalvolatileorganiccompounds, BVOCs) 研究现状及未来的研究方向, 侧重介绍了陆地生态系统中植物排放BVOCs的种类、生物学功能及其对大气化学过程的影响。BVOCs按其化学结构以及在大气中的滞留时间可以分为 4类 :异戊二烯、单萜、其它活性BVOCs和其它次活性BVOCs。不同的植物类群排放不同的BVOCs种类并具有不同的排放特性, 环境条件对植物不同BVOCs的排放影响也不同。BVOCs作为有机物质被排放到体外, 从植物能量代谢的角度来讲要消耗一部分植物光合作用产物从而降低植物的生产力, 因此推测植物排放BVOCs具有一定的生理学或者生态学的功能。其中比较成熟的假说是抗热胁迫假说, 其次是抗氧化假说, 也有一些其它假说例如促氮同化假说等。但这些假说都还缺乏直接的有力证据, 有待更多的研究来支持。BVOCs被排放到大气中对大气化学过程的影响更是科学家关注的问题, BVOCs对大气的影响一方面是在大气对流层中促进臭氧 (O3 ) 的形成, 造成环境污染, 另一方面BVOCs通过对大气中的OH自由基和臭氧等氧化物浓度的调整而影响到大气中甲烷等温室气体的平衡, 对大气温室效应具有间接的贡献。我国在BVOCs的研究上也做了大量的工作, 包括分析鉴定了一些植物排放的BVOCs, 探讨了环境因子对植物BVOCs排放速率的影响, 从不同尺度估测了BVOCs的排放量等等。今后对BVOCs的研究将会集中在以下几个方面 :1) 进一步研究不同植物类群释放的BVOCs种类及其它们在大气中的理化性质 ;2 ) 继续探讨植物排放BVOCs的合成与代谢途径及其生物学功能 ;3) 研究BVOCs对大气化学过程的作用, 以及区域植被变化对BVOCs排放格局进而对区域乃至全球环境变化的影响 ;4 ) 加强对一些研究比较薄弱的生态系统例如在热带地区所进行的BVOCs研究工作 ;5 ) 进一步建立和完善BVOCs排放的理论模型, 以模拟不同陆地生态系统BVOCs排放的时空动态。  相似文献   

12.
Ecosystems - The biogenic volatile organic compounds, BVOCs have a central role in ecosystem–atmosphere interactions. High-latitude ecosystems are facing increasing temperatures and insect...  相似文献   

13.
BVOCs: plant defense against climate warming?   总被引:11,自引:0,他引:11  
Plants emit a substantial amount of biogenic volatile organic compounds (BVOCs) into the atmosphere. These BVOCs represent a large carbon loss and can be up to approximately 10% of that fixed by photosynthesis under stressful conditions and up to 100gCm(-2) per year in some tropical ecosystems. Among a variety of proven and unproven BVOC functions in plants and roles in atmospheric processes, recent data intriguingly link emission of these compounds to climate. Ongoing research demonstrates that BVOCs could protect plants against high temperatures. BVOC emissions are probably increasing with warming and with other factors associated to global change, including changes in land cover. These increases in BVOC emissions could contribute in a significant way (via negative and positive feedback) to the complex processes associated with global warming.  相似文献   

14.
植物挥发性有机化合物(biogenic volatile organic compounds,BVOCs)在近地表臭氧和二次有机气溶胶生成中有重要作用,而大气CO2浓度上升对植物BVOCs释放有显著影响。利用Meta-analysis方法对已发表的数据进行整合分析发现:(1)总体而言,大气CO2浓度增加会导致不同木本植物(常绿与落叶)BVOCs释放降低;(2)就不同木本植物BVOCs释放而言,大气CO2浓度增加主要导致落叶植物BVOCs释放速率降低,而常绿植物则以增加为主;(3)就植物释放BVOCs种类而言,大气CO2浓度增加显著降低异戊二烯的释放速率,对单萜烯释放速率则无显著影响。结果可为阐明陆地生态系统BVOCs释放对全球CO2浓度增加的响应提供依据。  相似文献   

15.
16.
Bioenergy crop production is rapidly expanding in Europe, and the potential emissions of biogenic volatile organic compounds (BVOCs) might change the chemical composition of the atmosphere, influencing in turn air quality and regional climate. The environmental impacts of bioenergy crops on air chemistry are difficult to assess due to a lack of accurate field observations. Therefore, we studied BVOC fluxes from a bioenergy maize field in North‐Eastern Germany throughout the entire reproductive growth stage of the plants. Combining automated large chambers and proton transfer reaction mass spectrometry (PTR‐MS), we successfully measured fluxes of the highly reactive hydrocarbons monoterpenes (MTs) and sesquiterpenes (SQTs), together with several other BVOCs, including alcohols, aldehydes, ketones, benzenoids, and fatty acid derivatives. Emissions of MTs and SQTs were relatively high (17.0% and 3.6% of total mean molar BVOC emission, respectively) compared to methanol emissions (17.6%). Seasonal MT and SQT fluxes were clearly associated with the flowering phase, originating mainly from the flowering tissues as shown in additional laboratory experiments. From the observations of CO2 net ecosystem exchange and evapotranspiration rates, we could exclude heat and drought stress‐induced BVOC emissions. Standard emission factors calculated for all compounds, chemical groups, and growth stages, showed that the temperature dependency of volatile terpenoid fluxes decreased distinctively with proceeding development stage. The results indicate that emissions from large‐scale bioenergy maize fields should be better differentiated and considered in regional estimates of aerosol formation. For the implementation of such relation into biogeochemical modelling, it should be considered that not only seasonal weather development but also phenological growth stages are determining the BVOC patterns and emission potentials.  相似文献   

17.
The introduction of new crops to agroecosystems can change the chemical composition of the atmosphere by altering the amount and type of plant‐derived biogenic volatile organic compounds (BVOCs). BVOCs are produced by plants to aid in defense, pollination, and communication. Once released into the atmosphere, they have the ability to influence its chemical and physical properties. In this study, we compared BVOC emissions from three potential bioenergy crops and estimated their theoretical impacts on bioenergy agroecosystems. The crops chosen were miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), and an assemblage of prairie species (mix of ~28 species). The concentration of BVOCs was different within and above plant canopies. All crops produced higher levels of emissions at the upper canopy level. Miscanthus produced lower amounts of volatiles compared with other grasses. The chemical composition of volatiles differed significantly among plant communities. BVOCs from miscanthus were depleted in terpenoids relative to the other vegetation types. The carbon flux via BVOC emissions, calculated using the flux‐gradient method, was significantly higher in the prairie assemblage compared with miscanthus and switchgrass. The BVOC carbon flux was approximately three orders of magnitude lower than the net fluxes of carbon measured over the same fields using eddy covariance systems. Extrapolation of our findings to the landscape scale leads us to suggest that the widespread adoption of bioenergy crops could potentially alter the composition of BVOCs in the atmosphere, thereby influencing its warming potential, the formation of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate that, among at least these three potential options for bioenergy production, miscanthus is likely to have lower impacts on atmospheric chemistry and biotic interactions mediated by these volatiles when miscanthus is planted on the landscape scale.  相似文献   

18.
Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land‐use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress‐induced emissions due to climate change.  相似文献   

19.
植物源挥发性有机物的生态意义(综述)   总被引:1,自引:0,他引:1  
植物释放的挥发性有机气体(volatile organic compounds, VOCs)在对流层大气中通过一系列氧化还原反应,改变大气的化学组成,对臭氧合成、一氧化碳生成、甲烷氧化等有重要作用,其氧化物质对区域乃至全球的环境和气候都产生一定的影响。本文综述植物释放的VOCs对大气化学、温室效应、光化学烟雾的影响;介绍VOCs释放机制、合成途径及排放速率;对今后研究方向和大面积种植林木、城市绿化提出建议。  相似文献   

20.
Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m?2 h?1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The megan v2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号