首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preeclampsia is a prevalent and potentially devastating disorder of pregnancy. Characterized by a sudden spike in blood pressure and urinary protein levels, it is associated with significant obstetric complications. BPH/5 is an inbred mouse model of preeclampsia with borderline hypertension before pregnancy. BPH/5 mice develop hypertension, proteinuria, and endothelial dysfunction during late gestation (after E14.5). We hypothesized that BPH/5 mice might exhibit early feto-placental abnormalities before the onset of maternal disease. All placental cell lineages were present in BPH/5 mice. However, the fetal and placental weights were reduced, with abnormalities in all the placental zones observed starting early in gestation (E9.5-E12.5). The fractional area occupied by the junctional zone was significantly reduced at all gestational timepoints. Markedly fewer CDKN1C-stained trophoblasts were seen invading the proximal decidual zone, and this was accompanied by reductions in Cdkn1c gene expression. Trophoblast giant cell morphology and cytokeratin staining were not altered, although the mRNA levels of several giant cell-specific markers were significantly downregulated. The labyrinth layer displayed decreased branching morphogenesis of endothelial cells, with electron microscopy evidence of attenuated trophoblast layers. The maternal decidual arteries showed increased wall-to-lumen ratios with persistence of actin-positive smooth muscle cells. These changes translated into dramatically increased vascular resistance in the uterine arteries, as measured by pulse-wave Doppler. Collectively, these results support the hypothesis that defects at the maternal-fetal interface are primary causal events in preeclampsia, and further suggest the BPH/5 model is important for investigations of the underlying pathogenic mechanisms in preeclampsia.  相似文献   

2.
Placental hypoxia/ischemia has been implicated as a central factor in the development of preeclampsia. One particularly useful animal model to study the impact of placental ischemia is the reduced uterine perfusion pressure (RUPP) model. We have previously demonstrated that RUPP animals exhibit elevated placental oxidative stress, which plays an important role in the development of the associated maternal hypertension. Recently, we have demonstrated that cobalt protoporphyrin (CoPP)-mediated induction of heme oxygenase-1 (HO-1) attenuates RUPP-induced oxidative stress and consequent hypertension. However, signaling pathways that are involved in this process are virtually unknown. Here, we show that placentas from RUPP animals exhibit increased phosphorylation of JNK, STAT1, STAT3, and p52shc with a concomitant increase in caspase-3 activation and depletion of intracellular ATP. Treatment with CoPP decreased RUPP-induced phosphorylation of JNK and STAT1, while it increased phosphorylation of ERK and STAT3, leading to decreased caspase-3 activation and restoration of intracellular ATP content. Our data imply that RUPP induces oxidative stress and the consequent injurious state by increasing phosphorylation of mediators of injury (STAT1, JNK) and, to a lesser extent, survival (STAT3, p52shc) in placentas of pregnant rats. HO-1 induction shifts this balance to a prosurvival phenotype by augmenting phosphorylation of the prosurvival ERK and STAT3, while suppressing phosphorylation of JNK and STAT1. This attenuates the resulting injury, as indicated by caspase-3 activation and ATP depletion. These results demonstrate a novel therapeutic activity of HO-1 induction in placental cell survival during ischemia and support the HO-1 pathway as a promising therapeutic target for the management of preeclampsia.  相似文献   

3.
Preeclampsia is a pregnancy-specific disorder characterised by hypertension and proteinuria occurring after the 20th week of gestation. Delivery of the placenta results in resolution of the condition, implicating the placenta as a central culprit in the pathogenesis of preeclampsia. In preeclampsia, an inadequate placental trophoblast invasion of the maternal uterine spiral arteries results in poor placental perfusion, leading to placental ischaemia. This could result in release of factors into the maternal circulation that cause widespread activation or dysfunction of the maternal endothelium. Factors in the maternal circulation might induce oxidative stress and/or elicit an inflammatory response in the maternal endothelium, resulting in the altered expression of several genes involved in the regulation of vascular tone. This review addresses the potential circulating factors and the molecular mechanisms involved in the alteration of vascular function that occurs in preeclampsia.  相似文献   

4.
IntroductionPreeclampsia is a maternal hypertensive disorder with uncertain etiology and a leading cause of maternal and fetal mortality worldwide, causing nearly 40% of premature births delivered before 35 weeks of gestation. The first stage of preeclampsia is characterized by reduction of utero-placental blood flow which is reflected in high blood pressure and proteinuria during the second half of pregnancy. In human placenta androgens derived from the maternal and fetal adrenal glands are converted into estrogens by the enzymatic action of placental aromatase. This implies that alterations in placental steroidogenesis and, subsequently, in the functionality or bioavailability of placental aromatase may be mechanistically involved in the pathophysiology of PE.MethodsSerum samples were collected at 32–36 weeks of gestation and placenta biopsies were collected at time of delivery from PE patients (n = 16) and pregnant controls (n = 32). The effect of oxygen tension on placental cells was assessed by incubation JEG–3 cells under 1% and 8% O2 for different time periods, Timed-mated, pregnant New Zealand white rabbits (n = 6) were used to establish an in vivo model of placental ischemia (achieved by ligature of uteroplacental vessels). Aromatase content and estrogens and androgens concentrations were measured.ResultsThe protein and mRNA content of placental aromatase significantly diminished in placentae obtained from preeclamptic patients compared to controls. Similarly, the circulating concentrations of 17-β-estradiol/testosterone and estrone/androstenedione were reduced in preeclamptic patients vs. controls. These data are consistent with a concomitant decrease in aromatase activity. Aromatase content was reduced in response to low oxygen tension in the choriocarcinoma JEG–3 cell line and in rabbit placentae in response to partial ligation of uterine spiral arteries, suggesting that reduced placental aromatase activity in preeclamptic patients may be associated with chronic placental ischemia and hypoxia later in gestation.ConclusionsPlacental aromatase expression and functionality are diminished in pregnancies complicated by preeclampsia in comparison with healthy pregnant controls.  相似文献   

5.
Background: Preeclampsia is new-onset hypertension with proteinuria during pregnancy. The initiating event in preeclampsia has been postulated to involve reduced placental perfusion, which leads to widespread dysfunction of the maternal vascular endothelium.Objective: The main objective of this brief review was to highlight some of the recent advances in our understanding of the mechanisms whereby the endothelin (ET) system, via ET type A (ETA) receptor activation, modulates blood pressure in preeclamptic women and in animal models of pregnancy-related hypertension.Methods: This review focused on the role of ET and tumor necrosis factor-α (TNF-α) in preeclampsia, with emphasis on the pathophysiology of hypertension in response to placental ischemia in animal models of pregnancy. Relevant published data were identified by searching PubMed and supplemented with contributions from our laboratory.Results: Studies in preeclamptic women indicate that their hypertension is associated with increases in ET synthesis. Recent studies in pregnant rats indicate that the ET system is activated in response to reductions in uterine perfusion pressure and to chronic elevations in serum TNF-α concentrations. In these 2 animal models, the findings also suggest that ET A receptor activation may play a role in mediating hypertension.Conclusions: Although recent studies in animal models implicate an important role for the ET system in preeclampsia, the usefulness of selective ET A receptor antagonists for the treatment of hypertension in women with preeclampsia remains unclear. This important question will not be answered until well-controlled clinical studies using specific ET A receptor antagonists are conducted for women with preeclampsia.  相似文献   

6.
Reduced perfusion to the placenta in early pregnancy is believed to be the initiating factor in the development of preeclampsia, triggering local ischemia and systemic vascular hyperresponsiveness. This sequence of events creates a predisposition to the development of altered vascular function and hypertension. This study was designed to determine the influence of placental insufficiency on the responsiveness of mesenteric resistance arteries in an animal model of preeclampsia. Placental insufficiency was induced by reduction in uteroplacental perfusion pressure (RUPP) in experimental Sprague-Dawley rat dams. The uterine branches of the ovarian arteries and the abdominal aortae of pregnant rats were surgically constricted on gestational Day 14. Dams in the control group underwent a sham procedure. Rats were euthanized on gestational Day 20, followed by removal of the small intestine and adjacent mesentery. First-order mesenteric resistance arteries were mounted on a small vessel wire myograph and challenged with incremental concentrations of vasoconstrictors and vasorelaxants. Mesenteric arteries in dams with placental insufficiency demonstrated an increased maximal tension to phenylephrine (7.15 +/- 0.15 vs. 5.4 +/- 0.27 mN/mm, P < 0.001); potassium chloride at 60 mM (3.43 +/- 0.11 vs. 2.77 +/- 0.14 mN/mm, P < 0.01) and 120 mM (3.92 +/- 0.18 vs. 2.97 +/- 0.16 mN/mm, P < 0.01); and angiotensin II (2.59 +/- 0.42 vs. 1.51 +/- 0.22 mN/mm, P < 0.05). Maximal relaxation to endothelium-dependent relaxants acetylcholine and calcium ionophore (A23187) was not significantly reduced. Data suggest that placental insufficiency leads to hyperresponsiveness to vasoconstrictor stimuli in mesenteric arteries.  相似文献   

7.
Preeclampsia is a pregnancy-specific disorder characterized by hypertension and excess protein excretion in the urine. It is an important cause of maternal and fetal morbidity and mortality worldwide. The disease is almost exclusive to humans and delivery of the pregnancy continues to be the only effective treatment. The disorder is probably multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells. Numerous in vitro and animal models have been used to study aspects of preeclampsia, the most common being models of placental oxygen dysregulation, abnormal trophoblast invasion, inappropriate maternal vascular damage and anomalous maternal-fetal immune interactions. Investigations into the pathophysiology and treatment of preeclampsia continue to move the field forward, albeit at a frustratingly slow pace. There remains a pressing need for novel approaches, new disease models and innovative investigators to effectively tackle this complex and devastating disorder.  相似文献   

8.
Preeclampsia is a serious and common hypertensive complication of pregnancy, affecting ~5 to 8 % of pregnancies. The underlying cause of preeclampsia is believed to be placental ischemia, which causes secretion of pathogenic factors into the maternal circulation. While a number of these factors have been identified, it is likely that others remain to be elucidated. Here, we have utilized a relevant preclinical rodent model of placental ischemia-induced hypertension, the reduced uterine perfusion pressure (RUPP) model, to determine the effect of chronic placental ischemia on the underlying chorionic tissue and placental villi. Tissue from control and RUPP rats were isolated on gestational day 19 and mRNA from these tissues was subjected to microarray analysis to determine differential gene expression. At a statistical cutoff of p < 0.05, some 2,557 genes were differentially regulated between the two groups. Interestingly, only a small subset (22) of these genes exhibited changes of greater than 50 % versus control, a large proportion of which were subsequently confirmed using qRT-PCR analysis. Network analysis indicated a strong effect on inflammatory pathways, including those involving NF-κB and inflammatory cytokines. Of the most differentially expressed genes, the predominant gene classes were extracellular remodeling proteins, pro-inflammatory proteins, and a coordinated upregulation of the prolactin genes. The functional implications of these novel factors are discussed.  相似文献   

9.
Preeclampsia is a syndrome characterised by vascular dysfunction, impaired angiogenesis, and hypertension during pregnancy. Even when the precise pathophysiology of preeclampsia remains elusive, impaired vascular remodelling and placental angiogenesis in the placental villi and defective trophoblast invasion of the uterus are proposed as crucial mechanisms in this syndrome. Reduced trophoblast invasion leads to reduced uteroplacental blood flow and oxygen availability and increased oxidative stress. These phenomena trigger the release of soluble factors into the maternal and foetoplacental circulation that are responsible of the clinical features of preeclampsia. New blood vessels generation as well as vascular remodelling are mechanisms that require expression and activity of different proteases, including matrix metalloproteases, a-disintegrin and metalloproteases, and a-disintegrin and metalloprotease with thrombospondin motifs. These proteases exert proteolysis of the extracellular matrix. Additionally, cathepsins, a family of proteolytic enzymes, are primarily located in lysosomes but are also released by cells to the extracellular space. This review focuses on the role that these proteases play in the regulation of the uterine trophoblast invasion and the placental vascular remodelling associated with preeclampsia.  相似文献   

10.
Normal pregnancy is associated with reductions in total vascular resistance and arterial pressure possibly due to enhanced endothelium-dependent vascular relaxation and decreased vascular reactivity to vasoconstrictor agonists. These beneficial hemodynamic and vascular changes do not occur in women who develop preeclampsia; instead, severe increases in vascular resistance and arterial pressure are observed. Although preeclampsia represents a major cause of maternal and fetal morbidity and mortality, the vascular and cellular mechanisms underlying this disorder have not been clearly identified. Studies in hypertensive pregnant women and experimental animal models suggested that reduction in uteroplacental perfusion pressure and the ensuing placental ischemia/hypoxia during late pregnancy may trigger the release of placental factors that initiate a cascade of cellular and molecular events leading to endothelial and vascular smooth muscle cell dysfunction and thereby increased vascular resistance and arterial pressure. The reduction in uterine perfusion pressure and the ensuing placental ischemia are possibly caused by inadequate cytotrophoblast invasion of the uterine spiral arteries. Placental ischemia may promote the release of a variety of biologically active factors, including cytokines such as tumor necrosis factor-alpha and reactive oxygen species. Threshold increases in the plasma levels of placental factors may lead to endothelial cell dysfunction, alterations in the release of vasodilator substances such as nitric oxide (NO), prostacyclin (PGI(2)), and endothelium-derived hyperpolarizing factor, and thereby reductions of the NO-cGMP, PGI(2)-cAMP, and hyperpolarizing factor vascular relaxation pathways. The placental factors may also increase the release of or the vascular reactivity to endothelium-derived contracting factors such as endothelin, thromboxane, and ANG II. These contracting factors could increase intracellular Ca(2+) concentrations ([Ca(2+)](i)) and stimulate Ca(2+)-dependent contraction pathways in vascular smooth muscle. The contracting factors could also increase the activity of vascular protein kinases such as protein kinase C, leading to increased myofilament force sensitivity to [Ca(2+)](i) and enhancement of smooth muscle contraction. The decreased endothelium-dependent mechanisms of vascular relaxation and the enhanced mechanisms of vascular smooth muscle contraction represent plausible causes of the increased vascular resistance and arterial pressure associated with preeclampsia.  相似文献   

11.
During pregnancy, parathyroid hormone-related protein (PTHrP) is one of many growth factors that play important roles to promote fetal growth and development, including stimulation of placental calcium transport. Angiotensin II, acting through the AT(1a) receptor, is also known to promote placental growth. We examined the effects of bilateral uterine artery and vein ligation (restriction), which mimics placental insufficiency in humans, on growth, intrauterine PTHrP, placental AT(1a), and pup calcium. Growth restriction was surgically induced on day 18 of pregnancy in Wistar-Kyoto female rats by uterine vessel ligation. Uteroplacental insufficiency reduced fetal body weight by 15% and litter size (P < 0.001) compared with the control rats with no effect on placental weight or amniotic fluid volume. Uteroplacental insufficiency reduced placental PTHrP content by 46%, with increases in PTHrP (by 2.6-fold), parathyroid hormone (PTH)/PTHrP receptor (by 11.6-fold), and AT(1a) (by 1.7-fold) relative mRNA in placenta following restriction compared with results in control (P < 0.05). There were no alterations in uterine PTHrP and PTH/PTHrP receptor mRNA expression. Maternal and fetal plasma PTHrP and calcium concentrations were unchanged. Although fetal total body calcium was not altered, placental restriction altered perinatal calcium homeostasis, as evidenced by lower pup total body calcium after birth (P < 0.05). The increased uterine and amniotic fluid PTHrP (P < 0.05) may be an attempt to compensate for the induced impaired placental function. The present study demonstrates that uteroplacental insufficiency alters intrauterine PTHrP, placental AT(1a) expression, and perinatal calcium in association with a reduction in fetal growth. Uteroplacental insufficiency may provide an important model for exploring the early origins of adult diseases.  相似文献   

12.
Weight of placental tissues of cows increased exponentially from Day 100 to Day 250 of gestation, but at much slower relative and absolute rates than fetal weight. In addition, growth rate of fetal placental tissues was less than that of maternal placental tissues. Concentrations of DNA, RNA and protein, however, increased in fetal placental but not in maternal placental tissues. Fetal placental tissues therefore exhibited hyperplasia, which probably contributes to increased functional capacity of the placenta during late gestation. The rate of O2 uptake in vitro was greatest for maternal placental tissues, suggesting that the maternal portion of the placenta accounts for most of the large rate of placental O2 utilization in vivo. Compared with other placental tissues, rate of secretion of macromolecules by intercaruncular endometrium was high, but decreased from Day 100 to 250, suggesting that uterine glandular secretory activity may decrease as gestation advances. Rate of secretion of macromolecules also was high for intercotyledonary tissues and increased with day of gestation, suggesting a role for secretory products of chorioallantois in gravid uterine function.  相似文献   

13.
Lower maternal plasma volume expansion was found in idiopathic intrauterine growth restriction (IUGR) but the link remains to be elucidated. An animal model of IUGR was developed by giving a low-sodium diet to rats over the last week of gestation. This treatment prevents full expansion of maternal circulating volume and the increase in uterine artery diameter, leading to reduced placental weight compared to normal gestation. We aimed to verify whether this is associated with reduced remodeling of uteroplacental circulation and placental hypoxia. Dams were divided into two groups: IUGR group and normal-fed controls. Blood velocity waveforms in the main uterine artery were obtained by Doppler sonography on days 14, 18 and 21 of pregnancy. On day 22 (term = 23 days), rats were sacrificed and placentas and uterine radial arteries were collected. Diameter and myogenic response of uterine arteries supplying placentas were determined while expression of hypoxia-modulated genes (HIF-1α, VEGFA and VEGFR2), apoptotic enzyme (Caspase -3 and -9) and glycogen cells clusters were measured in control and IUGR term-placentas. In the IUGR group, impaired blood velocity in the main uterine artery along with increased resistance index was observed without alteration in umbilical artery blood velocity. Radial uterine artery diameter was reduced while myogenic response was increased. IUGR placentas displayed increased expression of hypoxia markers without change in the caspases and increased glycogen cells in the junctional zone. The present data suggest that reduced placental and fetal growth in our IUGR model may be mediated, in part, through reduced maternal uteroplacental blood flow and increased placental hypoxia.  相似文献   

14.
Relaxin is a peptide related to pregnancy that induces nitric oxide-related and gelatinase-related effects, allowing vasodilation and pregnancy-related adjustments permitting parturition to occur. Relaxin controls the hemodynamic and renovascular adaptive changes that occur during pregnancy. Interest has evolved regarding relaxin and a therapeutic principle in preeclampsia and heart failure. Preeclampsia is a pregnancy disorder, featuring hypertension, proteinuria and placental anomalies. We investigated relaxin in an established transgenic rat model of preeclampsia, where the phenotype is induced by angiotensin (Ang)-II production in mid pregnancy. We gave recombinant relaxin to preeclamtic rats at day 9 of gestation. Hypertension and proteinuria was not ameliorated after relaxin administration. Intrauterine growth retardation of the fetus was unaltered by relaxin. Heart-rate responses and relaxin levels documented drug effects. In this Ang-II-based model of preeclampsia, we could not show a salubrious effect on preeclampsia.  相似文献   

15.
Studies over the last decade have provided exciting new insights into potential mechanisms underlying the pathogenesis of preeclampsia. The initiating event in preeclampsia is generally regarded to be placental ischemia/hypoxia, which in turn results in the elaboration of a variety of factors from the placenta that generates profound effects on the cardiovascular system. This host of molecules includes factors such as soluble fms-like tyrosine kinase-1, the angiotensin II type 1 receptor autoantibody, and cytokines such as tumor necrosis factor-alpha, which generate widespread dysfunction of the maternal vascular endothelium. This dysfunction manifests as enhanced formation of factors such as endothelin, reactive oxygen species, and augmented vascular sensitivity to angiotensin II. Alternatively, the preeclampsia syndrome may also be evidenced as decreased formation of vasodilators such as nitric oxide and prostacyclin. Taken together, these alterations cause hypertension by impairing renal pressure natriuresis and increasing total peripheral resistance. Moreover, the quantitative importance of the various endothelial and humoral factors that mediate vasoconstriction and elevation of arterial pressure during preeclampsia remains to be elucidated. Thus identifying the connection between placental ischemia/hypoxia and maternal cardiovascular abnormalities in hopes of revealing potential therapeutic regimens remains an important area of investigation and will be the focus of this review.  相似文献   

16.
Preeclampsia (PE) is associated with increased total peripheral resistance (TPR), reduced cardiac output (CO), and diminished uterine and placental blood flow. We have developed an animal model that employs chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats to generate a "preeclamptic-like" state during late gestation that is characterized by hypertension, proteinuria, and endothelial dysfunction. Although this animal model has many characteristics of human PE, the systemic hemodynamic and regional changes in blood flow that occur in response to chronic RUPP remains unknown. Therefore, we hypothesized that RUPP would decrease uteroplacental blood flow and CO, and increase TPR. Mean arterial pressure (MAP), CO, cardiac index (CI), TPR, and regional blood flow to various tissues were measured using radiolabeled microspheres in the following two groups of conscious rats: normal pregnant rats (NP; n = 8) and RUPP rats (n = 8). MAP was increased (132 +/- 4 vs. 99 +/- 3 mmHg) in the RUPP rats compared with the NP dams. The hypertension in RUPP rats was associated with increased TPR (2.15 +/- 0.02 vs. 0.98 +/- 0.08 mmHg x ml(-1) x min(-1)) and decreased CI (246 +/- 20 vs. 348 +/- 19 ml x min(-1) x kg(-1), P < 0.002) when contrasted with NP dams. Furthermore, uterine (0.16 +/- 0.03 vs. 0.38 +/- 0.09 ml x min(-1) x g tissue(-1)) and placental blood flow (0.30 +/- 0.08 vs. 0.70 +/- 0.10 ml x min(-1) x g tissue(-1)) were decreased in RUPP compared with the NP dams. These data demonstrate that the RUPP model of pregnancy-induced hypertension has systemic hemodynamic and regional blood flow alterations that are strikingly similar to those observed in women with PE.  相似文献   

17.
It is generally accepted that preeclampsia results from reduction in perfusion to the uteroplacental unit leading to maternal hypertension and fetal growth restriction. Placental insufficiency creates an environment of fetal undernutriton, predisposing the fetus to the development of adult disease. In this study, we characterized the development and perpetuation of hypertension in two generations of male and female offspring subjected to an environment of fetal undernutrition via reduced uteroplacental perfusion pressure. Further, we examined vascular responses of resistance arteries in these animals to determine the influence of placental insufficiency on the development and perpetuation of hypertension. Experimental dams underwent a surgical procedure to reduce uteroplacental perfusion pressure, with resulting offspring comprising the first generation (F1). One male and one female from each of the F1 experimental litters served as breeders of the second generation (F2). Weekly systolic blood pressure measurements were obtained from 4 to 24 wk in control, F1, and F2 offspring. Vascular responsiveness to the vasoconstrictors phenylephrine and potassium chloride and the vasorelaxants acetylcholine and sodium nitroprusside was determined in the three offspring groups at 6, 9, and 12 wk of age. Our findings indicate that placental insufficiency during a critical developmental window in late gestation leads to hypertension in juvenile Sprague-Dawley rat offspring and is perpetuated in a second generation of offspring in a gender-specific manner. Further, exposure to placental insufficiency during late gestation leads to developmental alterations characterized by vascular hyperresponsiveness, perpetuated to a second generation of offspring in the absence of persistent environmental stimuli, contributing to hypertension.  相似文献   

18.
The placenta represents a critically important fetal-maternal interaction. Trophoblast migration and invasion into the uterine wall is a precisely controlled process and aberrations in these processes are implicated in diseases such as preeclampsia. Integrin-linked kinase (ILK) is a multifunctional, cytoplasmic, serine/threonine kinase that has been implicated in regulating processes such as cell proliferation, survival, migration, and invasion; yet the temporal and spatial pattern of expression of ILK in human chorionic villi and its role in early human placental development are completely unknown. We hypothesized that ILK would be expressed in trophoblast subtypes of human chorionic villi during early placental development and that it would regulate trophoblast migration. Immunoblot analysis revealed that ILK protein was highly detectable in placental tissue samples throughout gestation. In floating branches of chorionic villi, from 6 to 15 wk of gestation immunofluorescence analysis of ILK expression in placental tissue sections demonstrated that ILK was highly detectable in the cytoplasm and membranes of villous cytotrophoblast cells and in stromal mesenchyme, whereas it was barely detectable in the syncytiotrophoblast layer. In anchoring branches of villi, ILK was highly localized to plasma membranes of extravillous trophoblast cells. Transient expression of dominant negative E359K-ILK in the villous explant-derived trophoblast cell line HTR8-SVneo dramatically reduced migration into wounds compared to cells expressing wild-type ILK or empty vector. Therefore, our work has demonstrated that ILK is highly expressed in trophoblast subtypes of human chorionic villi during the first trimester of pregnancy and is a likely mediator of trophoblast migration during this period of development.  相似文献   

19.
The cyclin-dependent kinase inhibitor p57(kip2) regulates the cell cycle of trophoblastic cells. It has been established by a Japanese group that the heterozygous p57(kip2) knockout (p57(-/+)) mice are a good model of preeclampsia as they develop hypertension, proteinuria, and placental pathology. However, apart from the placental pathology, we could not observe these symptoms in our laboratory. Hence, we investigated the impact of diet and stress on this model. To do so, we compared the effects of the Japanese diet to that of the North American diet used by our animal facility. Furthermore, the impact of stress was determined by placing the mice in a restraining device before and at the end of gestation. Although the Japanese diet did not have any impact on blood pressure or proteinuria, the mice did develop endothelial dysfunction, left ventricular hypertrophy, as well as increased placental pathology. Also, all mice had smaller litters when fed the Japanese diet. However, stress response of these mice was not increased during gestation; in fact, a decrease was observed in the p57(-/+) mice, suggesting that this was probably not a player in the development of the pathology. Taken together, these results suggest that other environmental factors may have been implicated in the development of preeclampsia-like symptoms in this animal model. Moreover, we demonstrated that placental pathology and genetic factors are not sufficient to trigger preeclampsia-like symptoms in this model and that the diet might play an important part in the development of this multifactorial disease.  相似文献   

20.
Evidence continues to implicate reduced placental perfusion as the cause of preeclampsia, initiating a sequence of events leading to altered vascular function and hypertension. The present study was designed to determine the influence of reduced uteroplacental perfusion pressure (RUPP) on the responsiveness of uterine arcuate resistance arteries. A condition of RUPP was surgically induced in pregnant Sprague-Dawley rats on Gestational Day 14. On Gestational Day 20, uterine arcuate arteries were mounted on a small-vessel wire myograph and challenged with incremental concentrations of vasoconstrictors and vasorelaxants for measurement of isometric tension. Compared to the sham-operated controls, uterine arteries from the RUPP group demonstrated an increased maximal tension in response to phenylephrine (P < 0.01); potassium chloride at 30 mM (P < 0.05), 60 mM (P < 0.01), and 120 mM (P < 0.01); and angiotensin II (P < 0.05). In arteries from the RUPP and sham-operated control groups, endothelium-dependent relaxation in response to acetylcholine (P < 0.05) and calcium ionophore (A23187; P < 0.05) was significantly reduced in the RUPP group compared to the sham-operated controls. Fetal growth indices, including litter size, fetal weight, and placental weight, were significantly reduced in the RUPP group compared to sham-operated controls, which is consistent with significant growth restriction. Data suggest that RUPP promotes hyperresponsiveness and impaired endothelium-dependent relaxation in uterine arcuate arteries, leading to intrauterine fetal growth restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号