首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
AM真菌对重金属污染土壤生物修复的应用与机理   总被引:15,自引:0,他引:15  
罗巧玉  王晓娟  林双双  李媛媛  孙莉  金樑 《生态学报》2013,33(13):3898-3906
土壤重金属污染威胁人类健康和整个生态系统,而高效、低耗、安全的生物修复技术显示出了极大的应用潜力,特别是利用植物-微生物共生体增强生物修复效应的应用.丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与90%以上的陆生高等植物形成共生体.研究发现,AM真菌能够增强宿主植物对土壤中重金属胁迫的耐受性.当前,利用AM真菌开展重金属污染土壤的生物修复已经引起环境学家和生态学家的广泛关注.基于此,围绕AM真菌在重金属污染土壤生物修复作用中的最新研究进展,从物理性防御体系的形成、对植物生理代谢的调控、生化拮抗物质的产生、基因表达的调控等角度探究AM真菌在重金属污染土壤生物修复中的作用机理,以期为利用AM真菌开展重金属污染的生物修复提供理论依据,并对本领域未来的发展和应用前景进行了展望.  相似文献   

2.
丛枝菌根在植物修复重金属污染土壤中的作用   总被引:23,自引:0,他引:23  
王发园  林先贵 《生态学报》2007,27(2):793-801
丛枝菌根(Arbuscular mycorrhizae,AM)是自然界中分布最广的一类菌根,AM真菌能与陆地上绝大多数的高等植物共生,常见于包括重金属污染土壤在内的各种生境中。在重金属污染条件下,AM真菌可以减轻重金属对植物的毒害,影响植物对重金属的吸收和转运,在重金属污染土壤的植物修复中显示出极大的应用潜力。重点介绍了AM真菌对植物重金属耐性的影响及其在植物提取和植物稳定中的应用等方面的进展,讨论了未来研究所面临的任务和挑战。  相似文献   

3.
4.
Many human activities, such as ore mining and smeltering, sewage sludge treatment and fossil fuel consumption, result in toxic soil concentrations of 'heavy metals' (Al, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Ti, Zn and others) (Gadd, 1993). There are also natural soils, such as serpentine, with levels of heavy metals that inhibit or preclude the growth of many plants and soil micro-organisms. However, certain plants and microorganisms do grow in these metalliferous sites. Understanding the physiology, ecology and evolution of tolerance to elevated soil metal concentrations is important in an applied setting, and is also of interest in theoretical biology. Applied importance relates to the improvement of forest health in areas subject to increasing pollution, rehabilitation of severely polluted sites by phytostabilization of metals, and metal removal using hyperaccumulating plants (Krämer, 2000; Ernst, 2000). Areas of theoretical interest include the evolution of local adaptation (Sork et al ., 1993) and how it is shaped by the combined influences of natural selection, gene flow and genetic architecture, as well as metal influences on various species interactions (Pollard, 2000). A paper appears on pages 367–379 in this issue by Jan Colpaert and coworkers which adroitly combines the disparate fields of physiology, genetics and ecology to answer several outstanding questions concerning heavy metal tolerance in mycorrhizal fungi.
Mycorrhizal fungi, which interact mutualistically with the majority of plant species, are well known for improving the P status of their hosts (Smith & Read, 1997). Some mycorrhizal fungi are also able to mobilize N and P from organic substrates and to provide plants with improved micronutrient and water acquisition, pathogen resistance, and a variety of other benefits (Smith & Read, 1997). One of these additional benefits is the amelioration of toxicity in metalliferous soils.  相似文献   

5.
Metal toxicity and ectomycorrhizas   总被引:29,自引:1,他引:28  
Metal toxicity (Al and heavy metals) is a major constraint affecting root growth in a number of natural or managed ecosystems. Fine roots of the majority of plant species are associated with mycorrhizal fungi, which may modify the sensitivity of roots to metal stress. In this review, we summarise the available evidence demonstrating beneficial effects of ectomycorrhizas in alleviation of metal toxicity in forest tree seedlings. We identify experimental shortcomings of past research (e.g. the use of shoot metal concentrations as a measure of metal uptake, use of microanalytical techniques biased by element redistribution) that may confound major conclusions drawn from these experiments. Although there is no doubt that in many cases ectomycorrhizal fungi indeed ameliorate metal stress in their host plants, the mechanism(s) involved remain(s) unclear. The role of metal sorption on fungal tissues thought to reduce metal exposure of the host plant is critically reviewed. As direct evidence (both under artificial and soil conditions) supporting a unique role of fungal immobilisation of metals is lacking so far, there is an urgent need to also test alternative tolerance mechanisms such as the release of metal chelating substances, or nutritional and hormonal effects mediated by mycorrhizal fungi.  相似文献   

6.
Cadmium (Cd), a toxic metal released into agricultural settings induces numerous changes in plant growth and physiology. The main known mechanisms of Cd toxicity include its affinity for sulfhydryl groups in proteins and its ability to replace some essential metals in active sites of enzymes, thus causing inhibition of enzyme activities and protein denaturation. This article reviews detrimental effects of Cd toxicity on the functional biology of plants and summarizes the mechanisms that are activated by plants to prevent the absorption or to detoxify Cd ions such as synthesis of antioxidants, osmolytes, phytochelatins, metallothioneins, etc. Arbuscular mycorrhizal (AM) fungi are reported to be present on the roots of plants growing in metal-contaminated soils and play an important role in metal tolerance. Through mycorrhizal symbiosis, heavy metals are immobilized in the rhizosphere through precipitation in the soil matrix, adsorption onto the root surface or accumulation within roots, and compartmentalized in aboveground parts of the plant. This article unfolds the potential role of AM fungi in enhancing Cd tolerance of plants.  相似文献   

7.
Toxic metal accumulation in soils of agricultural interest is a serious problem needing more attention, and investigations on soil–plant metal transfer must be pursued to better understand the processes involved in metal uptake. Arbuscular mycorrhizal (AM) fungi are known to influence metal transfer in plants by increasing plant biomass and reducing metal toxicity to plants even if diverging results were reported. The effects of five AM fungi isolated from metal contaminated or non-contaminated soils on metal (Cd, Zn) uptake by plant and transfer to leachates was assessed with Medicago truncatula grown in a multimetallic contaminated agricultural soil. Fungi isolated from metal-contaminated soils were more effective to reduce shoot Cd concentration. Metal uptake capacity differed between AM fungi and depended on the origin of the isolate. Not only fungal tolerance and ability to reduce metal concentrations in plant but also interactions with rhizobacteria affected heavy metal transfer and plant growth. Indeed, thanks to association with nodulating rhizobacteria, one Glomus intraradices inoculum increased particularly plant biomass which allowed exporting twofold more Cd and Zn in shoots as compared to non-mycorrhizal treatment. Cd concentrations in leachates were variable among fungal treatments, but can be significantly influenced by AM inoculation. The differential strategies of AM fungal colonisation in metal stress conditions are also discussed.  相似文献   

8.
Bioremediation is an integrated management of a polluted ecosystem where different organisms are employed to catalyze the natural processes that decontaminate the environment. The potential role of bioremediation, particularly higher terrestrial plants (phytoremediation) research in the remediation of metal-polluted sites, has been the focus of much research in recent years. Arbuscular mycorrhizal fungi are soil microorganisms that establish mutual symbiosis with the majority of higher plants, providing direct links between fungi and roots. This paper reviews the incidence of arbuscular mycorrhizal fungi in metal polluted sites, their role in imparting metal tolerance to plants, the factors affecting arbuscular mycorrhizal fungi in metal polluted sites, and their mechanism of heavy metal tolerance. Particular attention is given to the current methodologies and challenges in this field.  相似文献   

9.
The aim of this work was to jointly study non-mycorrhizal (dark septate fungi) and mycorrhizal (arbuscular mycorrhizae) colonization along a large range of heavy metal pollution in soil in order to determine the effective contribution of each type of endophytes in relation to heavy metal uptake and tolerance. Hence, eight sites were chosen in the mining area of northern France with respect both to a large range of heavy metal contamination (Cd, Pb, Zn) and monospecific colonization by Arrhenatherum elatius. Root colonization with both arbuscular mycorrhizae (AM) and dark septate fungi (DSF) as well as spore density in rhizospheric soil were estimated in relation to soil characteristics. Mycorrhizal infestation (hyphae, arbuscules and vesicles) was adversely affected by soil pollution almost to exclusion. The intensity of colonization with DSF was very low in presence of AM in non-contaminated soils but higher in polluted soils. The effect of the fungal colonization on the heavy metal tolerance of Arrhenatherum elatius is discussed.  相似文献   

10.
The aim of this review is to assess the mode of action and role of antioxidants as protection from heavy metal stress in roots, mycorrhizal fungi and mycorrhizae. Based on their chemical and physical properties three different molecular mechanisms of heavy metal toxicity can be distinguished: (a) production of reactive oxygen species by autoxidation and Fenton reaction; this reaction is typical for transition metals such as iron or copper, (b) blocking of essential functional groups in biomolecules, this reaction has mainly been reported for non-redox-reactive heavy metals such as cadmium and mercury, (c) displacement of essential metal ions from biomolecules; the latter reaction occurs with different kinds of heavy metals. Transition metals cause oxidative injury in plant tissue, but a literature survey did not provide evidence that this stress could be alleviated by increased levels of antioxidative systems. The reason may be that transition metals initiate hydroxyl radical production, which can not be controlled by antioxidants. Exposure of plants to non-redox reactive metals also resulted in oxidative stress as indicated by lipid peroxidation, H(2)O(2) accumulation, and an oxidative burst. Cadmium and some other metals caused a transient depletion of GSH and an inhibition of antioxidative enzymes, especially of glutathione reductase. Assessment of antioxidative capacities by metabolic modelling suggested that the reported diminution of antioxidants was sufficient to cause H(2)O(2) accumulation. The depletion of GSH is apparently a critical step in cadmium sensitivity since plants with improved capacities for GSH synthesis displayed higher Cd tolerance. Available data suggest that cadmium, when not detoxified rapidly enough, may trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading to growth inhibition, stimulation of secondary metabolism, lignification, and finally cell death. This view is in contrast to the idea that cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号