首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Pattern recognition receptors, non-clonal immune proteins recognizing common microbial components, are critical for non-self recognition and the subsequent induction of Rel/NF-kappaB-controlled innate immune genes. However, the molecular identities of such receptors are still obscure. Here, we present data showing that Drosophila possesses at least three cDNAs encoding members of the Gram-negative bacteria-binding protein (DGNBP) family, one of which, DGNBP-1, has been characterized. Western blot, flow cytometric, and confocal laser microscopic analyses demonstrate that DGNBP-1 exists in both a soluble and a glycosylphosphatidylinositol-anchored membrane form in culture medium supernatant and on Drosophila immunocompetent cells, respectively. DGNBP-1 has a high affinity to microbial immune elicitors such as lipopolysaccharide (LPS) and beta-1,3-glucan whereas no binding affinity is detected with peptidoglycan, beta-1,4-glucan, or chitin. Importantly, the overexpression of DGNBP-1 in Drosophila immunocompetent cells enhances LPS- and beta-1,3-glucan-induced innate immune gene (NF-kappaB-dependent antimicrobial peptide gene) expression, which can be specifically blocked by pretreatment with anti-DGNBP-1 antibody. These results suggest that DGNBP-1 functions as a pattern recognition receptor for LPS from Gram-negative bacteria and beta-1, 3-glucan from fungi and plays an important role in non-self recognition and the subsequent immune signal transmission for the induction of antimicrobial peptide genes in the Drosophila innate immune system.  相似文献   

2.
无脊椎动物先天免疫模式识别受体研究进展   总被引:6,自引:0,他引:6  
免疫系统的基本功能是“自己”与“非己”识别.对入侵物的识别是免疫防御的起始,最终引发效应物反应系统,包括吞噬作用、包被作用、激活蛋白酶级联反应和黑化作用以及诱导抗菌肽的合成等,从而清除或消灭入侵物.研究证明,这种“非己”识别是因为存在某些特异性的、可溶的或与细胞膜结合的模式识别受体,可以识别或结合微生物表面保守的、而在宿主中又不存在的病原相关分子模式.模式识别受体通过对病原相关分子的识别启动先天免疫防御.近年来这方面的研究进展很快,已经在无脊椎动物中确定了多种模式识别受体,包括肽聚糖识别蛋白、含硫酯键蛋白、革兰氏阴性菌结合蛋白、清除受体、C型凝集素、硫依赖型凝集素、Toll样受体和血素等,并对其性质和功能进行了研究.  相似文献   

3.
4.
A serine proteinase pathway in insect hemolymph leads to prophenoloxidase activation, an innate immune response against pathogen infection. In the tobacco hornworm Manduca sexta, recombinant hemolymph proteinase 14 precursor (pro-HP14) interacts with peptidoglycan, autoactivates, and initiates the proteinase cascade (Ji, C., Wang, Y., Guo, X., Hartson, S., and Jiang, H. (2004) J. Biol. Chem. 279, 34101-34106). Here, we report the purification and characterization of pro-HP14 from the hemolymph of bacteria-injected M. sexta larvae. The zymogen, consisting of a single polypeptide with a molecular mass of 68.5 kDa, is truncated at the amino terminus. It is converted to a two-chain active form in the presence of beta-1,3-glucan (a fungal cell wall component) and beta-1,3-glucan recognition protein-2. The 45-kDa heavy chain contains four low-density lipoprotein receptor A repeats, one Sushi domain, and one unique cysteine-rich region, whereas the 30-kDa light chain contains a serine proteinase domain, which was labeled by [(3)H]diisopropyl fluorophosphate. Pro-HP14 in the plasma strongly binds curdlan, zymosan, and yeast and interacts with peptidoglycan and Micrococcus luteus. Addition of autoactivated HP14 elevated phenoloxidase activity level in the larval plasma. Recombinant M. sexta serpin-1I reduced prophenoloxidase activation by inhibiting HP14. These data are consistent with the current model on initiation and regulation of the prophenoloxidase activation cascade upon recognition of pathogen-associated molecular patterns by specific pattern recognition proteins.  相似文献   

5.
Coelomic fluid of Eisenia foetida earthworms (Oligochaeta, Annelida) contains a 42-kDa defense molecule named CCF for coelomic cytolytic factor. By binding microbial antigens, namely the O-antigen of lipopolysaccharide (LPS), beta-1,3-glucans, or N,N'-diacetylchitobiose present, respectively, on Gram-negative bacteria or yeast cell walls, CCF triggers the prophenoloxidase activating pathway. We report that CCF recognizes lysozyme-predigested Gram-positive bacteria or the peptidoglycan constituent muramyl dipeptide as well as muramic acid. To identify the pattern recognition domains of CCF, deletion mutants were tested for their ability to reconstitute the prophenoloxidase cascade in E. foetida coelomic fluid depleted of endogenous CCF in the presence of LPS, beta-1,3-glucans, N,N'-diacetylchitobiose, and muramic acid. In addition, affinity chromatography of CCF peptides was performed on immobilized beta-1,3-glucans or N,N'-diacetylchitobiose. We found that the broad specificity of CCF for pathogen-associated molecular patterns results from the presence of two distinct pattern recognition domains. One domain, which shows homology with the polysaccharide and glucanase motifs of beta-1,3-glucanases and invertebrate defense molecules located in the central part of the CCF polypeptide chain, interacts with LPS and beta-1,3-glucans. The C-terminal tryptophan-rich domain mediates interactions of CCF with N,N'-diacetylchitobiose and muramic acid. These data provide evidence for the presence of spatially distinct carbohydrate recognition domains within this invertebrate defense molecule.  相似文献   

6.
The prophenoloxidase (proPO) cascade is a major innate immune response in invertebrates, which is triggered into its active form by elicitors, such as lipopolysaccharide, peptidoglycan, and 1,3-beta-D-glucan. A key question of the proPO system is how pattern recognition proteins recognize pathogenic microbes and subsequently activate the system. To investigate the biological function of 1,3-beta-D-glucan pattern recognition protein in the proPO cascade system, we isolated eight different 1,3-beta-D-glucan-binding proteins from the hemolymph of large beetle (Holotrichia diomphalia) larvae by using 1,3-beta-D-glucan immobilized column. Among them, a 20- and 17-kDa protein (referred to as Hd-PGRP-1 and Hd-PGRP-2) show high sequence identity with the short forms of peptidoglycan recognition proteins (PGRPs-S) from human and Drosophila melanogaster. To be able to characterize the biochemical properties of these two proteins, we expressed them in Drosophila S2 cells. Hd-PGRP-1 and Hd-PGRP-2 were found to specifically bind both 1,3-beta-D-glucan and peptidoglycan. By BIAcore analysis, the minimal 1,3-beta-D-glucan structure required for binding to Hd-PGRP-1 was found to be laminaritetraose. Hd-PGRP-1 increased serine protease activity upon binding to 1,3-beta-D-glucan and subsequently induced the phenoloxidase activity in the presence of both 1,3-beta-D-glucan and Ca(2+), but no phenoloxidase activity was elicited under the same conditions in the presence of peptidoglycan and Ca(2+). These results demonstrate that Hd-PGRP-1 can serve as a receptor for 1,3-beta-D-glucan in the insect proPO activation system.  相似文献   

7.
Invertebrates, like vertebrates, utilize pattern recognition proteins for detection of microbes and subsequent activation of innate immune responses. We report structural and functional properties of two domains from a beta-1,3-glucan recognition protein present in the hemolymph of a pyralid moth, Plodia interpunctella. A recombinant protein corresponding to the first 181 amino-terminal residues bound to beta-1,3-glucan, lipopolysaccharide, and lipoteichoic acid, polysaccharides found on cell surfaces of microorganisms, and also activated the prophenoloxidase-activating system, an immune response pathway in insects. The amino-terminal domain consists primarily of an alpha-helical secondary structure with a minor beta-structure. This domain was thermally stable and resisted proteolytic degradation. The 290 residue carboxyl-terminal domain, which is similar in sequence to glucanases, had less affinity for the polysaccharides, did not activate the prophenoloxidase cascade, had a more complicated CD spectrum, and was heat-labile and susceptible to proteinase digestion. The carboxyl-terminal domain bound to laminarin, a beta-1,3-glucan with beta-1,6 branches, but not to curdlan, a beta-1,3-glucan that lacks branching. These results indicate that the two domains of Plodia beta-1,3-glucan recognition protein, separated by a putative linker region, bind microbial polysaccharides with differing specificities and that the amino-terminal domain, which is unique to this class of pattern recognition receptors from invertebrates, is responsible for stimulating prophenoloxidase activation.  相似文献   

8.
Innate immunity is based on the recognition of cell-surface molecules of infecting agents. Microbial substances, such as peptidoglycan, lipopolysaccharide, and beta-1,3-glucans, produce functional responses in Drosophila hemocytes that contribute to innate immunity. We have used two-dimensional gel electrophoresis and MS to resolve lipopolysaccharide-induced changes in the protein profile of a Drosophila hemocytic cell line. We identified 24 intracellular proteins that were up- or down-regulated, or modified, in response to immune challenge. Several proteins with predicted immune functions, including lysosomal proteases, actin-binding/remodeling proteins, as well as proteins involved in cellular responses to oxidative stress, were affected by the immune assault. Intriguingly, a number of the proteins identified in this study have recently been implicated in phagocytosis in higher vertebrates. We suggest that phagocytosis is activated in Drosophila hemocytes by the presence of microbial substances, and that this activation constitutes an evolutionarily conserved arm of innate immunity. In addition, a number of proteins involved in calcium-regulated signaling, mRNA processing, and nuclear transport were affected, consistent with a possible role in reprogramming of gene expression. In conclusion, the present proteome analysis identified many proteins previously not linked to innate immunity, demonstrating that differential protein profiling of Drosophila hemocytes is a valuable tool for identification of new players in immune-related cellular processes.  相似文献   

9.
昆虫免疫识别与病原物免疫逃避机理研究进展   总被引:1,自引:0,他引:1  
昆虫在长期进化过程中形成复杂的天然免疫系统,病原识别是启动下游免疫反应的第一步,这一过程主要是由不同的模式识别蛋白来完成的。目前发现并鉴定的昆虫模式识别蛋白主要包括肽聚糖识别蛋白、类免疫球蛋白、β-1,3-葡聚糖结合蛋白、C型凝集素及具多功能的载脂蛋白等,不同的蛋白种类具有不同的结构、功能及识别对象。与昆虫免疫识别相对应的是,不同昆虫病原物在进化过程中发展出不同策略的免疫逃避能力,以战胜宿主免疫而致病或最终杀死昆虫。本文就昆虫免疫过程中不同模式识别蛋白的结合对象、结构与功能,以及逐渐兴起的病原物通过分子伪装等进行免疫逃避的研究进展进行了综述。并在此基础上,作者就昆虫免疫与昆虫病理研究的发展方向进行了展望,认为只有当两方面研究相结合时,才能更好地揭示昆虫宿主与病原物之间免疫与抗免疫的动态相互作用过程。  相似文献   

10.
The biochemical basis of antimicrobial responses in Manduca sexta   总被引:1,自引:0,他引:1  
Innate immunity is essential for the wellbeing of vertebrates and invertebrates. Key components of this defense system include pattern recognition receptors that bind to infectious agents, extra-and intra-cellular proteins that relay signals, as well as molecules and cells that eliminate pathogens. We have been studying the defense mechanisms in a biochemical model insect, Manduca sexta. In this insect, hemolin, peptidoglycan recognition proteins, β-1,3-glucan recognition proteins and C-type lectins detect microbial surface molecules and induce immune responses such as phagocytosis, nodulation, encapsulation, melanization and production of antimicrobial peptides. Some of these responses are mediated by extracellular serine proteinase pathways. The proteolytic activation of prophenoloxidase (proPO) yields active phenoloxidase (PO) which catalyzes the formation of quinones and melanin for wound healing and microbe killing. M. sexta hemolymph proteinase 14 (HP 14) precursor interacts with peptidoglycan or β-1,3-glucan, autoactivates, and leads to the activation of other HPs including HP21 and proPO-activating proteinases (PAPs). PAP-1, -2 and -3 cut proPO to generate active PO in the presence of two serine proteinase homologs. Inhibition of the proteinases by serpins and association of the proteinase homologs with bacteria ensure a localized defense reaction. M. sexta HP1, HP6, HP8, HP17 and other proteinases may also participate in proPO activation or processing of spatzle and plasmatocyte spreading peptide.  相似文献   

11.
The innate immune response in vertebrates and invertebrates requires the presence of pattern recognition receptors or proteins that recognize microbial cell components including lipopolysaccharide, bacterial peptidoglycan (PGN), and fungal 1,3-beta-D-glucan. We reported previously that PGN and 1,3-beta-D-glucan recognition proteins from insect hemolymph were able to induce the activation of the prophenoloxidase-activating system, one of the major invertebrate innate immune reactions. The goal of this study was to characterize the biochemical properties and effects of the human counterparts of these molecules. Soluble pattern recognition proteins were purified from human serum and identified as human mannose-binding lectin (MBL) and L-ficolin. The use of specific microbial cell component-coupled columns demonstrated that MBL and L-ficolin bind to PGN and 1,3-beta-D-glucan, respectively. Purified MBL and L-ficolin were associated with MBL-associated serine proteases-1 and -2 (MASPs) and small MBL-associated protein as determined by Western blot analysis. Finally, the binding of purified MBL/MASP and L-ficolin/MASP complexes to PGN and 1,3-beta-D-glucan, respectively, resulted in the activation of the lectin-complement pathway. These results indicate that human PGN and 1,3-beta-D-glucan recognition proteins function as complement-activating lectins.  相似文献   

12.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Nod1 and Nod2 are members of the rapidly expanding family of NACHT domain-containing proteins involved in intracellular recognition of bacterial products. Nods proteins are involved in the cytosolic detection of peptidoglycan motifs of bacteria, recognized through the LRR domain. The role of the NACHT-LRR system of detection in innate immune responses is highlighted at the mucosal barrier, where most of the membranous Toll like receptors (TLRs) are not expressed, or with pathogens that have devised ways to escape TLR sensing. For a given pathogen, the sum of the pathways induced by the recognition of the different "pathogen associated molecular patterns" (PAMPs) by the different pattern recognition receptors (PRRs) trigger and shape the subsequent innate and adaptive immune responses. Knowledge gathered during the last decade on PRR and their agonists, and recent studies on bacterial infections provide new insights into the immune response and the pathogenesis of human infectious diseases.  相似文献   

13.
Myocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) respond to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially Toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury.  相似文献   

14.
Lipoproteins and molecules for pattern recognition are centrally important in the innate immune response of both vertebrates and invertebrates. Mammalian apolipoproteins such as apolipoprotein E (apoE) are involved in LPS detoxification, phagocytosis, and possibly pattern recognition. The multifunctional insect protein, apolipophorin III (apoLp-III), is homologous to apoE. In this study we describe novel roles for apoLp-III in pattern recognition and multicellular encapsulation reactions in the innate immune response, which may be of direct relevance to mammalian systems. It is known that apoLp-III stimulates antimicrobial peptide production in insect blood, enhances phagocytosis by insect blood cells (hemocytes), and binds and detoxifies LPS and lipoteichoic acid. In the present study we show that apoLp-III from the greater wax moth, Galleria mellonella, also binds to fungal conidia and beta-1,3-glucan and therefore may act as a pattern recognition molecule for multiple microbial and parasitic invaders. This protein also stimulates increases in cellular encapsulation of nonself particles by the blood cells and exerts shorter term, time-dependent, modulatory effects on cell attachment and spreading. All these responses are dose dependent, occur within physiological levels, and, with the notable exception of beta-glucan binding, are only observed with the lipid-associated form of apoLp-III. Preliminary studies also established a beneficial role for apoLp-III in the in vivo response to an entomopathogenic fungus. These data suggest a wide range of immune functions for a multiple specificity pattern recognition molecule and may provide a useful model for identifying further potential roles for homologous proteins in mammalian immunology, particularly in terms of fungal infections, pneumoconiosis, and granulomatous reactions.  相似文献   

15.
Plants have to molecularly sense invasions from pathogenic microbes to activate their built-in immune responses. There are two different types of sensor proteins, called immune receptors. They are the indispensible molecular instruments to perceive non-self molecules derived from microbes. A genetic defect of the immune receptors fails to activate immune responses, consequently resulting in disease susceptibility. In general, membrane-bound immune receptors, known to be pattern recognition receptors and exposed on the outside of the cell, recognize microbe-associated molecular patterns from pathogens. Intracellular immune receptors, also called plant disease resistance proteins, directly perceive pathogen-derived effectors or indirectly recognize the effector-mediated modification of host proteins inside the cells. In this review, we introduce the classes and functions of pattern recognition receptors that were molecularly identified so far. Additionally, we summarize recent progresses in structural functions and molecular dynamics of the plant disease resistance proteins.  相似文献   

16.
《Fly》2013,7(2):121-125
Drosophila have a variety of innate immune strategies for defending itself from infection, including humoral and cell mediated responses to invading microorganisms. At the front lines of these responses, are a diverse group of pattern recognition receptors that recognize pathogen associated molecular patterns. These patterns include bacterial lipopolysaccharides, peptidoglycans, and fungal β?1,3 glucans. Some of the receptors catalytically modify the pathogenic determinant, but all are responsible for directly facilitating a signaling event that results in an immune response. Some of these events require multiple pattern recognition receptors acting sequentially to activate a pathway. In some cases, a signaling pathway may be activated by a variety of different pathogens, through parallel receptors detecting different pathogenic determinants. In this chapter, we review what is known about pattern recognition receptors in Drosophila, and how those lessons may be applied towards a broader understanding of immunity.  相似文献   

17.
beta-1,3-d-Glucans are biological response modifiers with potent effects on the immune system. A number of receptors are thought to play a role in mediating these responses, including murine Dectin-1, which we recently identified as a beta-glucan receptor. In this study we describe the characterization of the human homologue of this receptor and show that it is structurally and functionally similar to the mouse receptor. The human beta-glucan receptor is a type II transmembrane receptor with a single extracellular carbohydrate recognition domain and an immunoreceptor tyrosine activation motif in its cytoplasmic tail. The human beta-glucan receptor is widely expressed and functions as a pattern recognition receptor, recognizing a variety of beta-1,3- and/or beta-1,6-linked glucans as well as intact yeast. In contrast to the murine receptor, the human receptor mRNA is alternatively spliced, resulting in two major (A and B) and six minor isoforms. The two major isoforms differ by the presence of a stalk region separating the carbohydrate recognition domain from the transmembrane region and are the only isoforms that are functional for beta-glucan binding. The human receptor also binds T-lymphocytes at a site distinct from the beta-glucan binding site, indicating that this receptor can recognize both endogenous and exogenous ligands.  相似文献   

18.
Insects possess an antimicrobial defense response that is similar to the mammalian innate immune response. The innate immune system is designed to recognize conserved components of microorganisms called pathogen-associated molecular patterns (PAMPs). How host receptors detect PAMPs and transmit the signals to mount the immune response is being elucidated. Using GFP-Dorsal, -Dif, and -Relish reporter proteins in ex vivo assays, we demonstrate that Drosophila fat bodies, a major immune tissue, have both hemolymph-dependent and -independent responses. Microbial preparations such as lipoteichoic acid (LTA) and peptidoglycan (PGN) can stimulate some responses from dissected and rinsed larval fat bodies. Therefore, at least some aspects of recognition can occur on fat body cell surfaces, bypassing the requirement of hemolymph. Our results also show that supernatants from bacterial cultures can stimulate the nuclear translocation of Dorsal in dissected fat bodies, but this stimulation is strictly hemolymph-dependent. Various biochemical assays suggest that the factors from bacterial supernatants that stimulate the hemolymph-dependent nuclear translocation are likely made up of proteins. We further show that Dorsal mutant larvae have much lower phenoloxidase activity, consistent with a more important role of Dorsal in innate immunity than previously shown.  相似文献   

19.
20.
A lipopolysaccharide- and beta-1,3-glucan-binding protein (LGBP) was isolated and characterized from blood cells (hemocytes) of the freshwater crayfish Pacifastacus leniusculus. The LGBP was purified by chromatography on Blue-Sepharose and phenyl-Sepharose, followed by Sephacryl S-200. The LGBP has a molecular mass of 36 kDa and 40 kDa on 10% SDS-polyacrylamide gel electrophoresis under reducing and nonreducing conditions, respectively. The calculated mass of LGBP is 39,492 Da, which corresponds to the native size of LGBP; the estimated pI of the mature LGBP is 5.80. LGBP has binding activity to lipopolysaccharides as well as to beta-1,3-glucans such as laminarin and curdlan, but peptidoglycan could not bind to LGBP. Cloning and sequencing of LGBP showed significant homology with several putative Gram-negative bacteria-binding proteins and beta-1, 3-glucanases. Interestingly, LGBP also has a structure and functions similar to those of the coelomic cytolytic factor-1, a lipopolysaccharide- and glucan-binding protein from the earthworm Eisenia foetida. To evaluate the involvement of LGBP in the prophenoloxidase (proPO) activating system, a polyclonal antibody against LGBP was made and used for the inhibition of phenoloxidase (PO) activity triggered by the beta-1,3-glucan laminarin in the hemocyte lysate of crayfish. The PO activity was blocked completely by the anti-LGBP antibody. Moreover, the PO activity could be recovered by the addition of purified LGBP. These results suggest that the 36-kDa LGBP plays a role in the activation of the proPO activating system in crayfish and thus seems to play an important role in the innate immune system of crayfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号